

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

(A State Government University)

B.Tech

Curriculum - 2024

	FOURTH SEMESTER (January - June)													
Sl. No:	Slot	Course	Course Type	Course	Course Title (Course Name)	Credit Structure				SS	Total Marks		Credits	Hrs./ Week
NO:	5 2	Code	CC	ت ت ک	(Course Ivanie)	L	Т	P	R		CIA	ESE		VVCCK
1	A	GBMAT401	BSC	GC	Mathematics for Electrical Science-4	3	0	0	0	4.5	40	60	3	3
2	В	PCECT402	PC	PC	Signals and Systems	3	1	0	0	5	40	60	4	4
3	С	PCECT403	PC	PC	Linear Integrated Circuits	3	1	0	0	5	40	60	4	4
4	D	PBECT404	PC- PBL	PB	Microcontrollers	3	0	0	1	5.5	60	40	4	4
5	Е	PEECT411	PE	PE	Instrumentation	3	0	0	0	4.5	40	60	3	3
6	G	UCHUT346	HMC*	UC	Economics for Engineers	2	0	0	0	3	50	50	2	2
7	L	PCECL407	PCL	PC	Linear Integrated Circuits Lab	0	0	3	0	1.5	50	50	2	3
8	Q	PCECL408	PCL	PC	Microcontroller Lab	0	0	3	0	1.5	50	50	2	3
9	Н	HNECT409	VAC		Linear Algebra for Communication	3	1	0	0	5			4*	4*
	Total							31/ 36			24/28	26/30*		

SEMESTER 4

ELECTRONICS & COMMUNICATION ENGINEERING

MATHEMATICS FOR ELECTRICAL SCIENCE - 4

Course Code	GBMAT401	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic calculus	Course Type	Theory

Course Objectives:

- 1. To familiarize students with the foundations of probabilistic and statistical analysis mostly used in varied applications in engineering and science.
- **2.** To expose the students to the basics of random processes essential for their subsequent study of analog and digital communication

SYLLABUS

Module No.	Syllabus Description				
	Random variables, Discrete random variables and their probability				
	distributions, Cumulative distribution function, Expectation, Mean and variance, Binomial distribution, Poisson distribution, Poisson				
1	distribution as a limit of the binomial distribution, Joint pmf of two discrete random variables, Marginal pmf, Independent random				
	variables, Expected value of a function of two discrete variables. [Text 1: Relevant topics from sections 3.1 to 3.4, 3.6, 5.1, 5.2]				
2	Continuous random variables and their probability distributions, Cumulative distribution function, Expectation, Mean and variance, Uniform, Normal and Exponential distributions, Joint pdf of two Continuous random variables, Marginal pdf, Independent random variables, Expectation value of a function of two continuous variables. [Text 1: Relevant topics from sections 3.1, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2]	9			
3	Confidence Intervals, Confidence Level, Confidence Intervals and One-side confidence intervals for a Population Mean for large and	9			

	small samples (normal distribution and <i>t</i> -distribution), Hypotheses and Test Procedures, Type I and Type II error, <i>z</i> Tests for Hypotheses about a Population Mean (for large sample), <i>t</i> Test for Hypotheses about a Population Mean (for small sample), Tests concerning a population proportion for large and small samples. [Text 1: Relevant topics from 7.1, 7.2, 7.3, 8.1, 8.2, 8.3, 8.4]	
4	Random process concept, classification of process, Methods of Description of Random process, Special classes, Average Values of Random Process, Stationarity- SSS, WSS, Autocorrelation functions and its properties, Ergodicity, Mean-Ergodic Process, Mean-Ergodic Theorem, Correlation Ergodic Process, Distribution Ergodic Process. [Text 2: Relevant topics from Chapter 6]	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
2 Questions from each	Each question carries 9 marks.		
module.	Two questions will be given from each module,		
• Total of 8 Questions,	out of which 1 question should be answered.		
each carrying 3 marks	Each question can have a maximum of 3 sub	60	
	divisions.		
(8x3 =24marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate the concept, properties and important models of discrete random variables and to apply in suitable random phenomena.	К3
CO2	Describe the concept, properties and important models of continuous random variables and to apply in suitable random phenomena.	К3
CO3	Estimate population parameters, assess their certainty with confidence intervals, and test hypotheses about population means and proportions using <i>z</i> -tests and the one-sample <i>t</i> -test.	К3
CO4	Analyze random processes by classifying them, describing their properties, utilizing autocorrelation functions, and understanding their applications in areas like signal processing and communication systems.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	-	-	-	-	-	-	2
CO2	3	3	2	2	-	-	-	-	-	-	-	2
CO3	3	3	2	2	-	-	-	-	-	-	-	2
CO4	3	3	2	2	-	-	-	-	-	-	-	2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Probability and Statistics for Engineering and the Sciences	Devore J. L	Cengage Learning	9 th edition, 2016					
2	Probability, Statistics and Random Processes	T Veerarajan	The McGraw-Hill	3 rd edition, 2008					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Probability, Random Variables and Stochastic Processes,	Papoulis, A. & Pillai, S.U.,	McGraw Hill.	4 th edition, 2002					
2	Introduction to Probability and Statistics for Engineers and Scientists	Ross, S. M.	Academic Press	6 th edition, 2020					
3	Probability and Random Processes	Palaniammal, S.	PHI Learning Private Limited	3 rd edition, 2015					
4	Introduction to Probability	David F. Anderson, Timo, Benedek	Cambridge	1 st edition, 2017					

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/117/105/117105085/					
2	https://archive.nptel.ac.in/courses/117/105/117105085/					
3	https://archive.nptel.ac.in/courses/117/105/117105085/					
4	https://archive.nptel.ac.in/courses/117/105/117105085/					

SIGNALS AND SYSTEMS

Course Code	PCECT402	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Mathematics for Electrical and Physical Sciences (GYMAT101, GYMAT201)	Course Type	Theory

Course Objectives:

- 1. To provide sufficient understanding of different types of signals and systems in time and frequency domain.
- 2. Analyze LTI systems in time and frequency domain using different transforms

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction to signals and systems: Continuous time and discrete time signals - Elementary signals, Classification of signals, Basic signal operations. Continuous time and discrete time systems - Representation and Classification (memory, causal, stable, linear, time-invariant, invertible) Convolution integral and convolution sum operations. Continuous time and discrete time LTI systems-Stability and causality of LTI systems.	11
2	Frequency domain representation of continuous time signals: Continuous time Fourier series - Exponential Fourier series representation of periodic signals. Continuous time Fourier transform - Convergence and Gibbs phenomenon, Continuous time Fourier transform of standard signals, Properties of Continuous time Fourier transform, Inverse Transform. Bilateral Laplace Transform, Concept of ROC, Relation of Laplace transform to Fourier Transform.	11

3	Sampling of continuous time signals to discrete signals and frequency domain representation of discrete time signals: Conversion of continuous time signal to discrete time signal, Sampling theorem for low pass signals, Nyquist criteria, Aliasing. Discrete time Fourier series for discrete periodic signals. Discrete time Fourier transform (DTFT)-Convergence condition, DTFT of standard signals, Properties of DTFT, Inverse transform. Z transform- ROC, Properties (Proof not needed), Inverse transform, Relation between DTFT and Z-Transform.	11
4	Analysis of LTI systems using Transforms Concept of transfer function-Frequency response, Magnitude response and phase response. Analysis of Continuous time LTI systems using Laplace and Fourier transforms. Analysis of discrete time LTI systems using DTFT and Z transforms, Stability and causality using Z transform.	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendand	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
	Classify continuous and discrete time signals and systems based on	K2
CO1	their properties and perform basic operations on signals.	
	Determine the stability and causality of LTI systems using convolution	К3
CO2	operations.	
	Analyze signals in frequency domain using various transforms and	К3
CO3	examine their properties.	
	Interpret the use of various transforms to analyze continuous and	К3
CO4	discrete time LTI systems.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1			2							1
CO2	3	3	2	2	2							2
CO3	3	3	3	2	2							3
CO4	3	3	3	3	2							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Signals and Systems	Alan V. Oppenheim and Alan Willsky	Pearson	2/e, 2015				
2	Signals and Systems	Simon Haykin	John Wiley	2/e, 2021				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Signals and Systems	Anand Kumar	РНІ	3/e, 2013				
2	Principles of Signal Processing & Linear systems	B P. Lathi	Oxford University Press	2/e, 2009				
3	Signals & Systems - Continuous and Discrete	Rodger E. Ziemer	Pearson	4/e, 2013				
4	Analog and Digital Signal Processing	Ashok Ambardar	Brooks/Cole Publishing Company	2/e, 2013				
5	Signals and systems - Principles and Applications	Shaila Dinkar Apte	Cambridge University Press	1/e, 2016				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/117101055 https://nptel.ac.in/courses/117104074 https://nptel.ac.in/courses/108104100					
2	Same as above					
3	Same as above					
4	Same as above					

LINEAR INTEGRATED CIRCUITS

Course Code	PCECT403	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Analog Circuits (PCECT303)	Course Type	Theory

Course Objectives:

1. To develop skills to design and analyze circuits using operational amplifiers for various applications.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Differential Amplifiers: Differential amplifier configurations using BJT, DC Analysis - transfer characteristics; AC analysis - differential and common mode gains, CMRR, input and output resistance, voltage gain, constant current bias, constant current source. Concept of current mirror: two-transistor current mirror, Wilson and Widlar current mirrors. Operational amplifiers (Op Amps): The 741 Op Amp, Block diagram, Ideal Op Amp parameters, typical parameter values for 741, equivalent circuit, open loop configurations, voltage transfer curve, frequency response curve.	11
2	Op Amp with negative feedback: General concept of Voltage Series, Voltage Shunt, Current Series and Current Shunt negative feedback, Op Amp circuits with Voltage Series and Voltage Shunt feedback, Virtual ground concept. Analysis of inverting and non-inverting amplifier for closed loop gain, Input Resistance and Output Resistance. Op Amp applications: Summer, Voltage Follower, Differential and Instrumentation Amplifiers, Voltage to Current and Current to Voltage converters, Integrator, Differentiator, Precision Rectifiers, Comparators, Schmitt Triggers, Log and Antilog amplifiers.	11

	Oscillators and Multivibrators: Phase Shift and Wien-bridge Oscillators,				
	Triangular and Sawtooth waveform generators, Astable and Monostable				
	multivibrators.				
	Active filters: Comparison with passive filters, First and Second order				
3	Low pass, High pass, Band pass and Band Reject active filters, State	11			
	Variable filters.				
	Voltage Regulators: Fixed and Adjustable voltage regulators, IC 723 –				
	Low voltage and High voltage configurations, Current boosting, Current				
	limiting, Short circuit and Fold-back protection.				
	Timer and VCO: Timer IC 555 - Functional diagram, Astable and				
	monostable operations, Basic concepts of Voltage Controlled Oscillator				
	and application of VCO IC LM566.				
	Phase Locked Loop: Basic building block, Operation, Closed loop				
4	analysis, Lock and capture range, Applications of PLL, PLL IC565.	11			
	Data Converters: Digital to Analog converters, Specifications, Weighted	11			
	resistor type and R-2R Ladder type.				
	Analog to Digital Converters: Specifications, Flash type and Successive				
	approximation type.				

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Summarize the concepts of operational amplifiers and differential amplifier configurations	K2
CO2	Design operational amplifier circuits for various applications.	К3
CO3	Choose integrated circuit chips for various linear circuit applications.	K2
CO4	Implement various applications using specific integrated circuit chips	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	2										1
CO2	3	2	3	3	2							2
CO3	3				2							2
CO4	3	2	2	2	2							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Linear Integrated Circuits	Roy D. C. and S. B. Jain	New Age International	5/e, 2018				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Design with Operational Amplifiers and Analog Integrated Circuits		Tata McGraw Hill	3/e, 2017			
2	Op-Amps and Linear Integrated Circuits	Gayakwad R. A.	Prentice Hall	4/e, 2015			
3	Integrated Circuits	Botkar K. R.	Khanna Publishers	10/e, 2013			
4	Operational Amplifiers	C.G. Clayton	Butterworth & Company Publ. Ltd. Elsevier	5/e, 2005			
5	Operational Amplifiers & Linear Integrated Circuits	R.F. Coughlin & Fredrick Driscoll	РНІ	6/e, 2000			
6	Operational Amplifiers & Linear ICs	David A. Bell	Oxford University Press	3/e, 2011			
7	Microelectronic Circuits	Sedra A. S. and K. C. Smith	Oxford University Press	6/e, 2013			

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/117101106						
2	https://nptel.ac.in/courses/117101106						
3	https://nptel.ac.in/courses/117101106						
4	https://nptel.ac.in/courses/117101106						

MICROCONTROLLERS

Course Code	PBECT404	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBECT304-Logic Circuit Design	Course Type	Theory

Course Objectives:

- 1. To learn Microcontroller architecture and its programming
- 2. To learn embedded system design to develop a product.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Microcontroller Architecture – General internal architecture, Address	
	bus, Data bus, control bus.	
	The Microcontroller 8051: Features of 8051 microcontroller, Block	
1	diagram of 8051- program status word (PSW), accumulator, program	9
	counter. Memory organization – RAM & ROM, register banks and stack,	
	Special Function Registers (SFRs), I/O port organization, Interrupts.	
	Instruction Set of 8051 & Addressing modes: Classification of	
	instruction set - Data transfer group, arithmetic group, logical group,	
2	branching group.	
	Addressing modes - Types. Accessing the data from internal and external	9
	memory.	
	Programming 8051 Using Assembly Language: Introduction to 8051	
	assembly language programming. Data types & directives, Concept of	
3	subroutine. Software delay programming.	9
	Programming 8051 Using Embedded C Language: Introduction to	
	embedded C – advantages.	
	Timer / Counter in 8051: Timer registers - Timer0, Timer1.	
4	Configuration of timer registers. Timer mode programming. Counter	
	mode.	9

Serial Communication in 8051: Serial communication – modes and
protocols, RS-232 pin configuration and connection. Serial port
programming – transmitting and receiving.
Programming the interrupts: Use external, timer and serial port
interrupts. Interrupt priority settings.

Suggestion on Project Topics

- 1. Interface any known ADC chip to 8051 uC. Read the variation in voltage from a potentiometer and display it on an LCD module.
- 2. Interface any known DAC chip to 8051 uC. Generate a Sine waveform of 1KHz at any port pin.
- 3. DC motor interface for speed and direction control.
- 4. Stepper motor interface Unit step control, Rotation angle control, Speed control, Direction control
- 5. Read the Temperature sensor and display it on LCD.

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from	• 2 questions will be given from each module, out	
each module.	of which 1 question should be answered.	
• Total of 8 Questions,	• Each question can have a maximum of 2 sub	40
each carrying 2 marks	divisions.	40
(8x2 =16 marks)	• Each question carries 6 marks.	
	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Outline Architecture of Microcontroller	K2
CO2	Develop Microcontroller programs	K5
CO3	Design various interfaces to Microcontroller	K5
CO4	Design and implement an Embedded System	K6

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3	3	3	2	3			2				2
CO3	3	3	3	3	3			2				2
CO4	3	3	3	3	3	3	3	3	3	3	3	3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	The 8051 Microcontroller and Embedded Systems Using Assembly and C	Muhammad Ali Mazidi Janice Gillispie Mazidi Rolin D. McKinlay	Prentice Hall -Inc	Second, 2007			
2	The 8051 Microcontroller Architecture, Programming and Applications	Kenneth J Ayala Dhananjay V Gadre	Cengage Learning	2010			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	8051 hardware Description	Datasheet	Intel Corporation	1992			
2	Microcontrollers	Lyla B. Das	Pearson Education	2011			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	Microprocessors and Microcontrollers - https://nptel.ac.in/courses/106108100					
2	Microcontrollers and Applications - https://nptel.ac.in/courses/117104072					

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members				
(3 Hrs.)	Tutorial	Practical	Presentation		
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)		
Group discussion	Project Analysis	Data Collection	Evaluation		
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)		
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video		

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer	4
	Sessions	
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

INSTRUMENTATION

Course Code	PEECT 411	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

1. This course aims to introduce the basic concepts of electronic measuring instruments.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Introduction to measuring instruments	
	Generalized Configurations and Functional elements of Instrumentation	
1	systems, Need for Measurement Systems, Classification of Types of	
	Measuring instruments. Static and Dynamic characteristics of measuring	9
	instruments.	
	Sensors and Transducers	
	Classification and selection criteria of Transducers	
	Principles of operation, construction, theory, advantages and	
	disadvantages, applications of	
	Resistive Transducers: Potentiometers, strain gauges, (metallic and	
2	semi-conductor type), Resistance Thermometer, Thermistors.	
	Inductive Transducers: LVDT (Linear variable differential	9
	transformer).	
	Capacitive Transducers: various capacitive transducers based upon	
	familiar equation of capacitance (capacitive microphone)	
	Electronic Measuring Instruments	
	Digital storage oscilloscope, Working principle and applications of	
3	waveform analyser, digital frequency meter, harmonic distortion meter,	9
	harmonic analyser, spectrum analyser and logic state analyser IEEE -	

	488 General Purpose Interface Bus (GPIB) Instruments with application.	
	EMI,	
	Grounding and Shielding	
	PLC Programming	
	Basic PLC Programming: Programming ON/OFF Inputs, Creating	
	Ladder diagrams, Register Basics, PLC Timers and Counters, PLC	
4	Arithmetic functions, Number comparison functions, Data handling	0
	Functions: Skip function and applications; master control relay function	9
	and applications; jump with non-return and return; data table, register	
	and other move functions, PLC functions with BITS.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each	
• Total of 8 Questions,	module, out of which 1 question should be	
each carrying 3 marks	answered.	60
	Each question can have a maximum of 3 sub	
(8x3 = 24marks)	divisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Interpret the basic concepts of measuring instruments, its classification, and selection criteria.	K2
CO2	Outline the principle, construction and working of transducers for measuring physical variables.	K2
CO3	Comprehend the principle, construction and working of various electronic measuring instruments.	К2
CO4	Apply PLC programming for selected industrial processes.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3	3									
CO3	3	3	3									
CO4	3	3	3									

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Name of the Publisher	Edition and Year								
1	Doebelin's Measurement Systems	Ernest Doebelin, Dhanesh N. Manik	Tata McGraw Hill	6/e, 2011							
2	Electronic Instrumentation	Kalsi H S	Tata McGraw Hill	4/e, 2019							
3	Programmable Logic controllers Programming Methods and Applications	John R Hackworth, Frederick D Hackworth	Pearson Education	3/e, 2022							

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	"Electrical and Electronics Measurements and Instrumentation,"	Sawhney AK,	Dhanpat Rai and Sons	2023						
2	"Programmable Logic Controllers- Principles and applications	John W Webb, Ronald A. Reis,	Pearson	5/e, 2015						

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://archive.nptel.ac.in/courses/108/105/108105064/								
2	https://archive.nptel.ac.in/courses/108/105/108105153/								

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2.30
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- **2.** Provide fundamental concept of micro and macroeconomics related to engineering industry
- 3. Deliver the basic concepts of Value Engineering.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Basic Economics Concepts - Basic economic problems – Production Possibility Curve – Utility – Law of diminishing marginal utility – Law of Demand - Law of supply – Elasticity - measurement of elasticity and its applications – Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion – Economies of Scale – Internal and External Economies – Cobb-Douglas Production Function	
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition – Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	6

3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market-Demat Account and Trading Account – Stock market Indicators- SENSEX and NIFTY	6
4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost-Benefit Analysis - Capital Budgeting - Process planning	6

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Case study/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
10	15	12.5	12.5	50

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B				
Minimum 1 and	• 2 questions will be given from each module, out				
Maximum 2 Questions	of which 1 question should be answered.				
from each module.	• Each question can have a maximum of 2 sub				
• Total of 6 Questions,	divisions.	50			
each carrying 3 marks	Each question carries 8 marks.				
(6x3 =18marks)	(4x8 = 32 marks)				

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the fundamentals of various economic issues using laws and	K2
CO1	learn the concepts of demand, supply, elasticity and production function.	
	Develop decision making capability by applying concepts relating to	К3
CO2	costs and revenue, and acquire knowledge regarding the functioning of	
	firms in different market situations.	
GOA	Outline the macroeconomic principles of monetary and fiscal systems,	K2
CO3	national income and stock market.	
	Make use of the possibilities of value analysis and engineering, and	К3
CO4	solve simple business problems using break even analysis, cost benefit	
	analysis and capital budgeting techniques.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	РНІ	1966
3	Engineering Economics	R. Paneerselvam	PHI	2012

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition
2	Indian Financial System	cial System Khan M. Y. Tata		2011
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001

LINEAR INTEGRATED CIRCUITS LAB

Course Code	PCECL407	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCECT303	Course Type	Lab

Course Objectives:

- 1. To study the design and implementation of various Linear Integrated Circuits.
- 2. To familiarize the simulation of basic Linear Integrated Circuits.

Details of Experiment

Expt. No. Part A – List of Experiments using Op Amps (Minimum seven experiments mandatory) Familiarization of Operational amplifiers - Inverting and Non inverting a Integrator, Differentiator - frequency response, Adder, Comparators Measurement of Op-Amp parameters Difference Amplifier and Instrumentation amplifier	umplifiers,
(Minimum seven experiments mandatory) Familiarization of Operational amplifiers - Inverting and Non inverting a Integrator, Differentiator - frequency response, Adder, Comparators Measurement of Op-Amp parameters Difference Amplifier and Instrumentation amplifier	implifiers,
Integrator, Differentiator - frequency response, Adder, Comparators Measurement of Op-Amp parameters Difference Amplifier and Instrumentation amplifier	amplifiers,
Integrator, Differentiator - frequency response, Adder, Comparators Measurement of Op-Amp parameters Difference Amplifier and Instrumentation amplifier	
3 Difference Amplifier and Instrumentation amplifier	
4 61 34 3 3 3	
4 Schmitt trigger circuit	
5 Astable and Monostable multivibrators	
6 Waveform generators using Op Amps - Triangular and Sawtooth	
7 Wien bridge oscillator - without & with amplitude stabilization	
8 RC Phase shift Oscillator	
9 Active first and second order filters (LPF, HPF, BPF and BRF)	
10 Active Notch filter to eliminate the 50Hz power line frequency	
11 Precision rectifiers	
Part B – Application circuits using ICs	
Expt. No [Minimum three experiments are to be done]	
1 Astable and Monostable multivibrator using Timer IC NE555	
DC power supply using IC 723: Low voltage and high voltage configura	tions,
Short circuit and Fold-back protection.	
3 A/D converters- counter ramp and flash type.	
4 D/A Converters - R-2R ladder circuit	
5 Study of PLL IC: free running, frequency lock range and capture range	

	Part C – Simulation experiments
E (N	[The experiments shall be conducted using open tools such as QUCS, KiCad or
Expt No.	variants of SPICE]
	l
1	Simulation of any three circuits from experiments 3, 5, 6, 7, 8, 9, 10 and 11 of
1	section I
2	Simulation of experiments 3 or 4 from section II

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Design and implement basic linear integrated circuits using Op Amps.	K4
CO2	Design and implement basic linear integrated circuits using linear ICs.	K4
CO3	Design and simulate the functioning of basic linear integrated circuits and linear ICs. using simulation tools.	K4
CO4	Effectively troubleshoot a given circuit and analyze it	K4

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2						3			3
CO2	3	3	2						3			3
CO3	3	3	2		3				3			3
CO4	3	3	2						3			3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Linear Integrated Circuits	D. Roy Choudhary and Shail B Jain	New Age International Private Limited	6 th edition, 2021
2	Introduction to Pspice Using Orcad for Circuits and Electronics	M. H. Rashid	Pearson	3 rd edition, 2015

	Reference Books					
Sl. No Title of the Book Name of the Author/s Name of the Publisher Ed and						
1	Op-Amps And Linear Integrated Circuits: Business Management	Gayakwad	PHI	2002		
2	Linear Integrated Circuits	D Roy Choudhury, Shail Bala Jain	New Age International	(2018)		

	Video Links (NPTEL, SWAYAM)			
Module No.	Link ID			
1	https://onlinecourses.nptel.ac.in/noc24_ee73/preview			
2	https://archive.nptel.ac.in/courses/108/108/108108111/			

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

MICROCONTROLLER LAB

Course Code	PCECL408	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCECL307-Logic Circuit Design and Simulation Lab	Course Type	Lab

Course Objectives:

- 1. To learn Microcontroller Programming using Assembly and C language
- 2. To learn Microcontroller interfaces to various modules
- 3. To learn any advanced microcontrollers like ARM or higher.
- 4. To learn Embedded System Design

Details of Experiment

Experiments				
PART A – Data manipulation experiments using Assembly language(Min 4 has				
to be completed)				
Multiplication of two 16-bit numbers.				
Largest/smallest from a series.				
Sorting (Ascending/Descending) of data.				
Matrix addition.				
LCM and HCF of two 8-bit numbers.				
Code conversion – Hex to Decimal/ASCII to Decimal and vice versa.				
PART B - Interface to Microcontroller Assembly/C language (Min 3 has				
to be completed)				
Time delay generation and relay interface.				
Display (LED/Seven segments/LCD) and keyboard interface.				
ADC interface.				
DAC interface with waveform generation.				
Stepper motor and DC motor interface.				

	PART C - Interface with Advanced Microcontroller using C language (Min 3
	has to be completed)
1	PWM generation for DC motor control.
2	Object/Visitor Counter.
3	UART interface to Bluetooth.
4	SPI/I2C interface to display.
5	Real-time clock.

^{*} A minimum of 12 experiments is to be completed.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Develop 8051 Microcontroller programs	K4		
CO2	Design and implement various interfaces to the 8051 Microcontroller	K4		
CO3	Design and implement an Embedded System using a 8051 microcontroller	K4		
CO4	Design and implement an Embedded System using an ARM processor	K4		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2								2
CO2	3	3	3	2	3			2				2
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	The 8051 Microcontroller and Embedded Systems Using Assembly and C	Muhammad Ali Mazidi Janice Gillispie Mazidi Rolin D. McKinlay	Printice Hall -Inc	Second, 2007			
2	The 8051 Microcontroller Architecture, Programming and Applications	Kenneth J Ayala Dhananjay V Gadre	Cengage Learning	2010			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	8051 Hardware Description	Datasheet	Intel Corporation	1992			
2	Microprocessors and Microcontrollers	Lyla B. Das	Pearson Education	2011			
3	ARM System-on-Chip Architecture	Steve Furber	Addison-Wesley Educational Publishers Inc	2000			
4	System-on-Chip Design with Arm(R) Cortex(R)-M Processors	Joseph Yiu	ARM Education Media	2019			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	Microprocessors and Microcontrollers - https://nptel.ac.in/courses/106108100				
2	Microcontrollers and Applications - https://nptel.ac.in/courses/117104072				
3	Embedded System Design With ARM - https://onlinecourses.nptel.ac.in/noc22_cs93				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

 Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions. • Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 4
LINEAR ALGEBRA FOR COMMUNICATION

Course Code	HNECT409	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:1:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GYMAT101	Course Type	Theory

Course Objectives:

- 1. Develop a Rigorous Understanding of Linear Algebraic Structures and Transformation
- 2. Apply Linear Algebra Techniques to Real-World Problems and Computational Context

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Review of linear systems of equations and matrix algebra ([1] Ch. 1 and 2) Vector Spaces and Subspaces, Null Spaces, Column Spaces, and Linear Transformations, Linearly Independent Sets; Bases, The Dimension of a Vector Space, Rank, Applications to Difference Equations, Applications to Markov Chains ([1] Ch. 4)	11
2	Eigenvectors and Eigenvalues, The Characteristic Equation, Similarity, Diagonalization, Eigenvectors and Linear Transformations, Complex Eigenvalues, Discrete Dynamical Systems, Applications to Differential Equations ([1] Ch. 5)	11
3	Inner Product, Length, and Orthogonality, Orthogonal Sets, Orthogonal Projections, The Gram–Schmidt Process, Least-Squares Problems, Applications to Linear Models, Inner Product Spaces, Applications of Inner Product Spaces ([1] Ch. 6)	11

	Diagonalization of Symmetric Matrices, Quadratic Forms, Constrained Optimization, The Singular Value Decomposition, Applications to Image	
4	Processing and Statistics ([1] Ch. 7)	11

Suggested Assignment/Microproject: Use Numpy/Matplotlib packages to practice and visualize Linear Algebraic operations

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Analyze vector spaces and subspaces, apply concepts such as rank, null space, and linear transformations, and apply these to difference equations and Markov chains	К3		
CO2	Compute eigenvalues and eigenvectors, perform matrix diagonalization and similarity transformations, and apply these techniques to analyze linear transformations and discrete dynamical systems, including applications to differential equations.	К3		

CO3	Apply inner product concepts to construct orthogonal bases using the Gram-Schmidt process, solve least-squares problems, and interpret linear models through projections and orthogonality in inner product space	К3
CO4	Diagonalize symmetric matrices, analyze quadratic forms and constrained optimization problems, and apply singular value decomposition (SVD) to practical problems in image processing and statistical data analysis	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		2								2
CO2	3	3		2								2
CO3	3	3		2								2
CO4	3	3		2								2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Linear Algebra and its Applications	David C Lay	Pearson	5e, 2016
2	Linear Algebra and its Applications	Gilbert Strang	Cengage Learning	5e, 2018

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares	Stephen Boyd	Cambridge University Press	1e, 2018					
2	Matrix Analysis and Applied Linear Algebra	Carl D Meyer	Siam	1e, 2000					

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B. TECH HONOURS DEGREE EXAMINATION, MONTH AND YEAR

		YEAR		
		Course Code: HNECT409 Course Name: Linear Algebra for Communication		
Ma	x. M	arks: 60 Duration: 2 hours 30	minute	es
	1	PART A	СО	Marks
1		Answer all questions. Each question carries 3 marks		
1		Consider the system of linear equations $Ax = b$ where A is a 3 × 5 matrix	1	(3)
		with rank = 3. What can you say about the existence and uniqueness of		
		solution? Explain your reasoning.		
2		Define subspace of a vector space.	1	(3)
3		What is meant by the geometric and algebraic multiplicity of an eigenvalue.	2	(3)
4		Show that the eigenvalues of a triangular matrix are the entries on the	2	(3)
		diagonal.		
5		Find a non-zero vector orthogonal to $u_1 = [1, 2, 1], u_2 = [2, 5, 4]$ in \mathbb{R}^3 .	3	(3)
6		Prove the Pythagorean theorem for orthogonal vectors.	3	(3)
7		What do you mean by the positive definiteness of a quadratic form?	4	(3)
8		Give the singular value decomposition of a matrix A. What can you say	4	(3)
		about the factors in the SVD?		
		PART B		
		Answer any one full question from each module. Each question carries 9 m	arks	
		Module 1		
9	a)	Check whether the following vectors form a basis for the space spanned by	1	4
		them $v1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, v3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$		
	1. \		1	5
	b)	What is meant by null space of a linear transformation? Find the null space of the linear transformation $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$	1	3
10	3)	of the linear transformation $C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.	1	4
10	(a)	Let V be the first quadrant in x-y plane; that is, $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x \ge 0, y \ge 0 \right\}$. Is	1	_
	b)	V a subspace of \mathbb{R}^2 ? Express the polynomial $v = 3t^2 + 5t - 5$ as a linear combination of the	1	5
		polynomials $p_1 = t^2 + 2t + 1$, $p_2 = 2t^2 + 5t + 4$, $p_3 = t^2 + 3t + 6$		
		polynomials $P_1 = \iota + 2\iota + 1$, $P_2 = 2\iota + 3\iota + 4$, $P_3 = \iota + 3\iota + 6$		

		Module 2		
11	a)	Find the 2 × 2 linear transformation matrix A that reflects a point in the x-y plane about the x-axis. Intuitively find the eigenvectors and corresponding eigenvalues of A without actually computing them. Explain your reasoning. Check if $A^2 = I$. Justify your finding.	2	5
	b)	Prove that an $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.	2	4
12	a)	Find the eigenvalues and eigenvectors of the matrix $C = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.	2	4
	b)	Show that if $\{\lambda, x\}$ is an eigenpair for real matrix A , then so is $\{\overline{\lambda}, \overline{x}\}$, where	2	5
		overbar denotes complex conjugate		
		Module 3		
13	a)	Let $\{u_1, u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . Obtain the	3	4
		matrix for projecting a vector y onto W		
	b)	Let W=span $\{x1, x2\}$ where $x1=[3, 6, 0]^T$ and $x2=[1, 2, 2]^T$. Construct an orthogonal basis for W	3	5
14	a)	Show that transformation by an orthogonal matrix preserves norms and	3	4
		angles		
	b)	Show that the least-squares solution of a set of linear equations coincide with	3	5
		the solution for the normal equations		
		Module 4		
15	a)	Obtain the spectral decomposition of a symmetric matrix A	4	4
	b)	State five properties of a symmetric matrix	4	5
16	a)	Show that for a symmetric matrix A, any two eigenvectors from different eigenspaces are orthogonal	4	4
	b)	Let A be a symmetric matrix. Show that $x^T Ax$ is maximised (subject to	4	5
		x = 1) when x is an eigenvector of A corresponding to the largest		
		eigenvalue		
		****		1