SEMESTER 3

MECHANICAL ENGINEERING

SEMESTER S3 MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE – 3

(Common to B & C Groups)

Course Code	GYMAT301	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in complex numbers.	Course Type	Theory

Course Objectives:

- 1. To introduce the concept and applications of Fourier transforms in various engineering fields.
- **2.** To introduce the basic theory of functions of a complex variable, including residue integration and conformal transformation, and their applications

Module	Syllabus Description	Contact	
No.			
	Fourier Integral, From Fourier series to Fourier Integral, Fourier Cosine		
1	and Sine integrals, Fourier Cosine and Sine Transform, Linearity, Transforms of Derivatives, Fourier Transform and its inverse, Linearity,		
1	Transforms of Derivative. (Text 1: Relevant topics from sections 11.7,	9	
	11.8, 11.9)		
	Complex Function, Limit, Continuity, Derivative, Analytic functions,		
	Cauchy-Riemann Equations (without proof), Laplace's Equations,		
	Harmonic functions, Finding harmonic conjugate, Conformal		
2	mapping, Mappings of $w=z^2$, $w=e^z$, $w=\frac{1}{z}$, $w=\sin z$.	9	
	(Text 1: Relevant topics from sections 13.3, 13.4, 17.1, 17.2, 17.4)		
	Complex Integration: Line integrals in the complex plane (Definition &		
	Basic properties), First evaluation method, Second evaluation method,		
3	Cauchy's integral theorem (without proof) on simply connected domain,	9	
	Independence of path, Cauchy integral theorem on multiply connected		
	domain (without proof), Cauchy Integral formula (without proof).		
	(Text 1: Relevant topics from sections 14.1, 14.2, 14.3)		

	Taylor series and Maclaurin series, Laurent series (without proof),	
	Singularities and Zeros - Isolated Singularity, Poles, Essential	
	Singularities, Removable singularities, Zeros of Analytic functions - Poles	
	and Zeros, Formulas for Residues, Residue theorem (without proof),	
4	Residue Integration- Integral of Rational Functions of $cos\theta$ and $sin\theta$.	9
	(Text 1: Relevant topics from sections 15.4, 16.1, 16.2, 16.3, 16.4)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Determine the Fourier transforms of functions and apply them to solve problems arising in engineering.	К3
CO2	Understand the analyticity of complex functions and apply it in conformal mapping.	К3
CO3	Compute complex integrals using Cauchy's integral theorem and Cauchy's integral formula.	К3
CO4	Understand the series expansion of complex function about a singularity and apply residue theorem to compute real integrals.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Complex Analysis	Dennis G. Zill, Patrick D. Shanahan	Jones & Bartlett	3 rd edition, 2015
2	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023
3	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	44th edition, 2018
4	Fast Fourier Transform - Algorithms and Applications	K.R. Rao, Do Nyeon Kim, Jae Jeong Hwang	Springer	1 st edition, 2011

SEMESTER S3 MECHANICS OF SOLIDS

Course Code	PCMET302	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. To acquaint with the basic concepts of stress and deformation in solids.
- **2.** To practice the methodologies to analyse stresses and strains in simple structural members, and to apply the results in simple design problems.

Module No.	Syllabus Description	Contact Hours
	Introduction to analysis of deformable bodies. Types of external loads -	
	Normal, Shear, Bending and Bearing stress- Linear and Shear strains.	
	Hooke's law - Stress-Strain diagrams - concepts of Isotropy, Orthotropy,	
1	Anisotropy. Young's Modulus, Bulk Modulus and Rigidity Modulus.	11
	Poisson's ratio - Relationship between elastic constants.	-11
	Deformation in axially loaded bars –uniform cross section, varying cross	
	section, dissimilar materials, principle of superposition.	
	Thermal effects – simple, composite bars.	
	Torsion: Shafts - torsion theory of elastic circular bars - assumptions and	
	limitations – polar modulus - torsional rigidity – shaft design for torsional	
2	load.	
_	Beams- Classification - Diagrammatic conventions for supports and	11
	loading Differential equations between load, Shear Force and Bending	
	Moment- Shear Force and Bending Moment Diagrams of Cantilever and	
	Simply supported beam with Point load/UDL. Point of	
	Inflection.	

	Stresses in Beams: Pure Bending - Flexure formula for beams -	
	assumptions and limitations – Section Modulus - Flexural Rigidit	
3	- derivation and problems for rectangular section only -assumptions and	11
	limitations	
	Deflection of Beams: Moment-Curvature relation – assumptions	
	and limitations - Double Integration method - Macaulay's method	
	Stress on an inclined plane due to Uniaxial stress- Stress on an inclined	
	plane due to Biaxial stress- Stress on an inclined plane due to two Normal	
4	Stresses accompanied by Shear stresses- principal planes and stresses.	11
	Mohr's circle of stress.	
	Buckling and stability of long columns-Euler's buckling/crippling load for	
	columns with different end conditions- Euler equation derivation for both	
	ends hinged only- Rankine's formula	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Determine the stresses and strains in deformable bodies subjected to different types of external loads and thermal effects	К3
CO2	Analyse the torsion of circular bars and draw the shear force and bending moment diagrams for beams	K4
CO3	Determine the stresses and deflections in beams subjected to transverse loads	К3
CO4	Determine analytically and graphically the principal stresses and planes for structural members subjected to loads and analyse the strength of columns	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									
CO2	3	3	2									
CO3	3	3	2									
CO4	3	3	2									

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Mechanics of Solids	R.K.Bansal	Laxmi Publications	2012					
2	Mechanics of Solids	S. S. Bhavikatti	New Age International	2013					
3	Strength of Materials	Surendra Singh	S. K. Kataria & Sons	2013					
4	Strength of Materials	Rattan	McGraw Hills	2011					

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Mechanics of materials	R. C. Hibbeler	Pearson Higher Education	2018			
2	Engineering Mechanics of Solids	Popov E	PHI	2002			
3	Mechanics of Materials	Beer & Johnston	McGraw Hills	2017			
4	Mechanics of Materials	Pytel A. and Kiusalaas J.	Cengage Learning India Private Limited,	2015			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://onlinecourses.nptel.ac.in/noc22_ce46/preview					
2	https://onlinecourses.nptel.ac.in/noc22_ce46/preview					
3	https://onlinecourses.nptel.ac.in/noc22_ce46/preview					
4	https://onlinecourses.nptel.ac.in/noc22_ce46/preview					

SEMESTER S3 FLUID MECHANICS AND MACHINERY

Course Code	PCMET303	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To establish fundamental knowledge of basic fluid mechanics and its simple applications.
- **2.** To familiarize students with the relevance of turbo machines and find solutions to the associated engineering problems.

Module No.	Syllabus Description	Contact Hours
1	Prerequisite: Properties of fluid: Specific gravity, Specific Weight, Specific Volume, Dynamic and Kinematic Viscosity. Introduction to fluid mechanics - Types of fluids, Newton's law of viscosity. Pressure Measurement: Fluid pressure, Pressure head, types of pressures. Piezometer, Simple, differential Manometers. Fluid statics: Pressure, density, height relationship. Hydrostatic force and pressure on plane and inclined surfaces, Centre of pressure. Buoyancy and Metacentre. Stability of immersed and floating bodies.	8
2	Fluid kinematics: Description of fluid motion – Types of flows, Material derivative velocity and acceleration – Streamlines, path lines and streak lines, Stream function and velocity potential function, flow net . Fluid dynamics: Continuity equation, Euler's, and Bernoulli's equations. – Measuring instruments – Pitot tube, Orificemeter, Venturimeter, Rectangular and Triangular Notches-(notches Problems not required).	8

3	Pipe flow – laminar and turbulent flows, significance of Reynolds number, shear stress and velocity distribution in a pipe flow.— Hagen-Poiseullie equation, Darcy-Weisbach equation and Chezy's equation , Moody's chart for estimating frictional losses, Major and minor energy losses, hydraulic gradient, and total energy line. Navier-Stokes equation and explanation (without proof) . Dimensional analysis using Buckingham's π theorem. Boundary layer theory: Qualitative comparison	12
	between laminar and turbulent boundary layer. Boundary layer separation	
4	Impact of jets: Impact of jet on fixed vertical, moving vertical flat plates. Impact of jet on curved vanes – fixed and moving. Velocity triangles. Classification of Turbines and pumps Comparison and examples. Pelton, Francis and Kaplan Turbines: Principle and working, head, work done, efficiencies (Problems using velocity triangles not required). Centrifugal Pumps: Principle and working, head, work required, efficiencies, Priming and cavitation.(Problems using velocity triangles not required). Reciprocating Pump: Principle and working – slip,negative slip, work	12
	required and efficiency.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the fundamental fluid properties, their relationships and apply	К3
	them to estimate the fluid pressure and hydrostatic forces on bodies	
CO2	Classify the fluid flow and apply the principles kinematic and	К3
	dynamics using the conservation of mass and momentum equations.	
CO3	Analyse viscous flow through pipes and estimate the major and minor	К3
	losses associated with piping network.	
CO4	Understand the basic concept of dimensional analysis.	К3
CO5	Select suitable turbo machine for specific application by identifying the	К3
	pertinent parameters	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	3	3	2									
CO3	3	3										
CO4	3	2										
CO5	2	2				2						

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Fluid Mechanics	Cengel Y. A. and J. M. Cimbala	Tata McGraw Hill	2013						
2	Introduction to Fluid Mechanics and Fluid Machines	Som S.K.	McGraw Hill Education India	2011						
3	Fluid Mechanics and Hydraulic Machines	Bansal R.K.	Laxmi Publications	2005						

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Fluid Mechanics	White F.M.	Tata McGraw Hill	2003							
2	Engineering applications of Fluid dynamics	Fisher and Henly	Willford Press	2023							

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
	Fluid Statics						
1	https://www.youtube.com/watch?v=rY7bvZn75Do&list=PLwdnzlV3ogoWrAmpEcsPXayfsXnFf						
1	YY1O&index=4 Bouyancy, Metacentre and stability						
	https://www.youtube.com/watch?v=gMuucNxc7eI&list=PLwdnzlV3ogoV-						
	ATGY2ptuLS9mwLFOJoDw&index=7&pp=iAQB						
2	Fluid kinematics						
	https://www.youtube.com/watch?v=rY7bvZn75Do&list=PLwdnzlV3ogoWrAmpEcsPXayfsXnFf						
	YY1O&index=4						
3	Internal Viscous Flow						
	https://www.youtube.com/watch?v=qLx7ip0eBps&list=PLCoE5wxWtHFYiVGswvsWRaHjv18vx						
	ZzE2&index=17						
4	Introduction to turbomachines						
	https://www.youtube.com/watch?v=ocVzrn4DLj8&list=PLbMVogVj5nJQQp3QLuzbcHrt0XncZZ						
	TiE&index=2						

SEMESTER S3

MANUFACTURING PROCESSES

Course Code	PBMET304	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- To gain theoretical and practical knowledge in manufacturing processes and to develop and understanding of the dependent and independent variables which control a production processes.
- 2. Provide a detailed discussion on the welding process and the physics of welding. Introduce students to different welding processes weld testing and advanced processes to be able to appreciate the practical applications of welding.
- 3. Generate solutions to problems that may arise in manufacturing engineering

Module No.	Syllabus Description	Contact Hours
1	General Classification of Manufacturing Processes. Casting-Characteristics of sand, design of patterns, cores, chaplets, solidification of metals and Chvorinov's rule, elements of gating system, risers, chills, numerical problems, defects in castings. Special casting process- Shell moulding, precision investment, die casting,	
1	centrifugal casting, continuous casting and squeeze casting. Powder Metallurgy- Powder Production, powder characteristics, mixing, compaction methods, sintering.	9
2	Welding: Classification, Fusion and Solid-state welding processes Gas Welding - Oxyacetylene welding-chemistry, types of flame and its applications	9

	Arc welding- applications, process parameters, numerical problems, consumable and non-consumable arc welding, SMAW; GTAW; GMAW; SAW; AHW; PAW. Thermit welding, friction welding, electro slag welding, ultrasonic welding, electron beam welding, laser beam welding Resistance welding-applications, process parameters, numerical problems Heat Affected Zone, weldability of ferrous and non-ferrous metals, residual stresses and distortion, defects in welding Brazing - soldering - adhesive bonding	
3	Metal Forming: Plastic deformation and yield criteria — hot and cold working processes Rolling- Flat-rolling process, rolling force and power, numerical problems, types of rolling mills, rolling defects, miscellaneous rolling processes. Sheet metal operations- Press tool operations-Shearing, Tension, Compression, Tension and compression operations, applications, numerical problems. Types of die-Progressive dies, Compound dies, and Combination dies	9
4	Forging-Forging load, numerical problems, Various methods, applications, defects in forging - Wire, Rod, and tube drawing - mechanics of rod and wire drawing, drawing force and power, numerical problems, drawing defects – Deep drawing. Bending – Details of bending, Determination of work load, estimation of spring back, numerical problems. Extrusion- Metal flow, mechanics of extrusion, numerical problems, miscellaneous processes, defects in extrusion, applications	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	ce Project Internal Examination-1 (Written)		Internal Examination- 2 (Written)	Total
5	5 30		12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 2 marks (8x2 =16marks)	 Each question carries 6 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. 	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Classify different techniques of casting	K2
CO2	Summarize powder metallurgy processes	К2
CO3	Categorize welding processes according to welding principles and materials.	K2
CO4	Determine forming load associated with rolling, forging, drawing, extrusion, and sheet metal forming	К3
CO5	Develop products, processes or technologies for socially relevant applications.	K3, K4, K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	3										
CO5	3	3										

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Manufacturing Science	Amitabha Ghosh	Affiliated East-West	2 nd Edition					
1	Manufacturing Science	Asok Kumar Mallik	Private Limited	2010					
2	Manufacturing Engineering and	SeropeKalpakjian Steven	D						
2	Technology	R. Schmid	Pearson						
2	Manufacturing Technology	D.N. Doo	Tota MaCassy II:11						
3	Volume -1	P N Rao	Tata McGraw Hill						

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	American Society for Metals - ASM Metals Handbook, Vol. 14	Joseph R. Davis, S. L. Semiatin,	Forming and Forging ASM International	1989				
2	Tool design	Donalson cyril, LeCain, Goold, Ghose:-	McGraw Hill					
3	Cold and Hot Forging Fundamentals and Applications	Taylan Altan, Gracious Ngaile, Gangshu Shen	ASM International	2004				
4	Foundry Technology	Peter Beeley	Butterworth- Heinemann					

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation / Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for					
1	Project Planning and Proposal					
2	Contribution in Progress Presentations and Question Answer Sessions	4				
3	3 Involvement in the project work and Team Work					
4	4 Execution and Implementation					
5	Final Presentations	5				
6	6 Project Quality, Innovation and Creativity					
	Total	30				

Project Assessment and Evaluation criteria (30 Marks)

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approache.

SEMESTER S3

INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Course Code	GNEST305	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Demonstrate a solid understanding of advanced linear algebra concepts, machine learning algorithms and statistical analysis techniques relevant to engineering applications, principles and algorithms.
- 2. Apply theoretical concepts to solve practical engineering problems, analyze data to extract meaningful insights, and implement appropriate mathematical and computational techniques for AI and data science applications.

Module No.	Syllabus Description						
1	Introduction to AI and Machine Learning: Basics of Machine Learning - types of Machine Learning systems-challenges in ML- Supervised learning model example- regression models- Classification model example- Logistic regression-unsupervised model example- K-means clustering. Artificial Neural Network- Perceptron- Universal Approximation Theorem (statement only)- Multi-Layer Perceptron- Deep Neural Network- demonstration of regression and classification problems using MLP.(Text-2)	11					
2	Mathematical Foundations of AI and Data science: Role of linear algebra in Data representation and analysis – Matrix decomposition- Singular Value Decomposition (SVD)- Spectral decomposition- Dimensionality reduction technique-Principal Component Analysis (PCA). (Text-1)	11					
3	Applied Probability and Statistics for AI and Data Science: Basics of probability-random variables and statistical measures - rules in probability-Bayes theorem and its applications- statistical estimation-Maximum	11					

	Likelihood Estimator (MLE) - statistical summaries- Correlation analysis-					
	linear correlation (direct problems only)- regression analysis- linear					
	regression (using least square method) (Text book 4)					
	Basics of Data Science: Benefits of data science-use of statistics and					
4	Machine Learning in Data Science- data science process - applications of	11				
	Machine Learning in Data Science- modelling process- demonstration of ML					
	applications in data science- Big Data and Data Science. (For visualization					
	the software tools like Tableau, PowerBI, R or Python can be used. For					
	Machine Learning implementation, Python, MATLAB or R can be					
	used.)(Text book-5)					

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5 15		10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Apply the concept of machine learning algorithms including neural	К3				
CO1	networks and supervised/unsupervised learning techniques for					
	engineering applications.					
G04	Apply advanced mathematical concepts such as matrix operations,	К3				
CO2	singular values, and principal component analysis to analyze and solve					
	engineering problems.					
604	Analyze and interpret data using statistical methods including	К3				
CO3	descriptive statistics, correlation, and regression analysis to derive					
	meaningful insights and make informed decisions.					
CO4	Integrate statistical approaches and machine learning techniques to	К3				
	ensure practically feasible solutions in engineering contexts.					

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								
CO2	3	3	3	3								
CO3	3	3	3	3								
CO4	3	3	3	3								
CO5	3	3	3	3								

	Text Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s						
1	Introduction to Linear Algebra	Gilbert Strang	Wellesley- Cambridge Press	6 th edition, 2023				
2	Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow	Aurélien Géron	O'Reilly Media, Inc.	2nd edition,202 2				
3	Mathematics for machine learning	Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong	Cambridge University Press	1 st edition. 2020				
4	Fundamentals of mathematical statistics	Gupta, S. C., and V. K. Kapoor	Sultan Chand & Sons	9 th edition, 2020				
5	Introducing data science: big data, machine learning, and more, using Python tools	Cielen, Davy, and Arno Meysman	Simon and Schuster	1 st edition , 2016				

	Reference Books						
1	Data science: concepts and practice	Kotu, Vijay, and Bala Deshpande	Morgan Kaufmann	2 nd edition, 2018			
2	Probability and Statistics for Data Science	Carlos Fernandez- Granda	Center for Data Science in NYU	1 st edition, 2017			
3	Foundations of Data Science	Avrim Blum, John Hopcroft, and Ravi Kannan	Cambridge University Press	1 st edition, 2020			
4	Statistics For Data Science	James D. Miller	Packt Publishing	1st edition, 2019			
5	Probability and Statistics - The Science of Uncertainty	Michael J. Evans and Jeffrey S. Rosenthal	University of Toronto	1 st edition, 2009			
6	An Introduction to the Science of Statistics: From Theory to Implementation	Joseph C. Watkins	chrome- extension://efaidnbmn nnibpcajpcglclefindm kaj/https://www.math. arizo	Preliminary Edition.			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/106/106106198/					
2	https://archive.nptel.ac.in/courses/106/106/106106198/ https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/resources/lecture-29-singular-value-decomposition/					
3	https://ocw.mit.edu/courses/18-650-statistics-for-applications-fall-2016/resources/lecture-19-video/					
4	https://archive.nptel.ac.in/courses/106/106/106106198/					

SEMESTER S3

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- **2.** Provide fundamental concept of micro and macroeconomics related to engineering industry
- 3. Deliver the basic concepts of Value Engineering.

Module No.	Syllabus Description	Contact Hours
1	Basic Economics Concepts - Basic economic problems - Production Possibility Curve - Utility - Law of diminishing marginal utility - Law of Demand - Law of supply - Elasticity - measurement of elasticity and its applications - Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion - Economies of Scale - Internal and External Economies - Cobb-Douglas Production Function	6
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition – Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	6

3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market-Demat Account and Trading Account – Stock market Indicators-SENSEX and NIFTY	6
4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost-Benefit Analysis - Capital Budgeting - Process planning	6

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
0	15 12.5		12.5	50

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A			Part B		
•	Minimum 1 and Maximum 2	•	• 2 questions will be given from each module, out of		
	Questions from each module.		which 1 question should be answered.		
•	Total of 6 Questions, each	• Each question can have a maximum of 2 sub		50	
	carrying 3 marks	divisions.			
	(6x3 = 18marks)	Each question carries 8 marks.			
			(4x8 = 32 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the fundamentals of various economic issues using laws and	K2
	learn the concepts of demand, supply, elasticity and production function.	
COA	Develop decision making capability by applying concepts relating to	К3
CO2	costs and revenue, and acquire knowledge regarding the functioning of	
	firms in different market situations.	
CO3	Outline the macroeconomic principles of monetary and fiscal systems,	K2
	national income and stock market.	
COA	Make use of the possibilities of value analysis and engineering, and	К3
CO4	solve simple business problems using break even analysis, cost benefit	
	analysis and capital budgeting techniques.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015				
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	PHI	1966				
3	Engineering Economics	R. Paneerselvam	РНІ	2012				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition			
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011			
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002			
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001			

SEMESTER S3/S4

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Equip with the knowledge and skills to make ethical decisions and implement gendersensitive practices in their professional lives.
- 2. Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

Module No.	Syllabus Description	Contact Hours						
	Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue,							
	Respect for others, Profession and Professionalism, Ingenuity, diligence							
	and responsibility, Integrity in design, development, and research domains,							
	Plagiarism, a balanced outlook on law - challenges - case studies,							
	Technology and digital revolution-Data, information, and knowledge,							
	Cybertrust and cybersecurity, Data collection & management, High							
	technologies: connecting people and places-accessibility and social							
	impacts, Managing conflict, Collective bargaining, Confidentiality, Role of							
1	confidentiality in moral integrity, Codes of Ethics.							
	Basic concepts in Gender Studies - sex, gender, sexuality, gender spectrum:							
	beyond the binary, gender identity, gender expression, gender stereotypes,							
	Gender disparity and discrimination in education, employment and							
	everyday life, History of women in Science & Technology, Gendered							
	technologies & innovations, Ethical values and practices in connection							
	with gender - equity, diversity & gender justice, Gender policy and							
	women/transgender empowerment initiatives.							

2	Introduction to Environmental Ethics: Definition, importance and historical development of environmental ethics, key philosophical theories (anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering Principles: Definition and scope, triple bottom line (economic, social and environmental sustainability), life cycle analysis and sustainability metrics. Ecosystems and Biodiversity: Basics of ecosystems and their functions, Importance of biodiversity and its conservation, Human impact on ecosystems	6
	and biodiversity loss, An overview of various ecosystems in Kerala/India, and its significance. Landscape and Urban Ecology: Principles of landscape ecology, Urbanization and its environmental impact, Sustainable urban planning and green infrastructure.	
3	Hydrology and Water Management: Basics of hydrology and water cycle, Water scarcity and pollution issues, Sustainable water management practices, Environmental flow, disruptions and disasters. Zero Waste Concepts and Practices: Definition of zero waste and its principles, Strategies for waste reduction, reuse, reduce and recycling, Case studies of successful zero waste initiatives. Circular Economy and Degrowth: Introduction to the circular economy model, Differences between linear and circular economies, degrowth principles, Strategies for implementing circular economy practices and degrowth principles in engineering. Mobility and Sustainable Transportation: Impacts of transportation on the environment and climate, Basic tenets of a Sustainable Transportation design, Sustainable urban mobility solutions, Integrated mobility systems, E-Mobility, Existing and upcoming models of sustainable mobility solutions.	6
4	Renewable Energy and Sustainable Technologies: Overview of renewable energy sources (solar, wind, hydro, biomass), Sustainable technologies in energy production and consumption, Challenges and opportunities in renewable energy adoption. Climate Change and Engineering Solutions: Basics of climate change science, Impact of climate change on natural and human systems, Kerala/India and the Climate crisis, Engineering solutions to mitigate, adapt and build resilience to climate change. Environmental Policies and Regulations: Overview of key environmental policies and regulations (national and international), Role of engineers in policy implementation and compliance, Ethical considerations in environmental policy-making. Case Studies and Future Directions: Analysis of real-world case studies, Emerging trends and future directions in environmental ethics and sustainability, Discussion on the role of engineers in promoting a sustainable future.	6

Course Assessment Method (CIE: 50 marks, ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

Sl. No.	Item	Particulars	Group/I ndividua l (G/I)	Marks
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	I	5
2	Micro project (Detailed documentation of	1 a) Perform an Engineering Ethics Case Study analysis and prepare a report 1 b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics	G	8
includ	the project, including methodologies,	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
	findings, and reflections)	3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12
3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
		Total Marks		50

^{*}Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- **Application of Concepts**: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- Presentation Skills: Clarity, coherence, and professionalism in the final presentation.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	K5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011						
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006						
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023						
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019						
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012						
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.						
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Pvt Ltd, Delhi	4" edition, 2014						

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala

Module-IV

- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption - What gadgets are being used? How can we reduce demand using energysaving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

SEMESTER: S3

COMPUTER AIDED MACHINE DRAWING & MODELLING

Course Code	PCMEL307	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- **1.** To introduce modern CAD packages for drafting and modelling of engineering components.
- 2. To create a digital mock up of engineering components

Expt. No.	Experiments
	Understand the basics of machine drawing, including BIS code of practice, types of lines,
	dimensioning, scales of drawing, sectional views, geometric tolerances, and the
Part A	importance of GD&T. Additionally, to practice, simple 2D sketches to familiarize with
rartA	these concepts. Learn and practice drawing different types of rigid shaft couplings used
	for connecting shafts with collinear axes using 2D drafting software (Flange Coupling,
	Protected Flange Coupling etc). Understanding Basics of Assembly Drawings using 2D
	drafting software and creating a 2D Assembled Drawing with required Sectional Views
	(Universal coupling or Knuckle joint). Understanding Basics of Assembly Drawings
	using 2D drafting software and creating a 2D Assembled Drawing with required Sectional
	Views and prepare BOM (Stuffing Box). Use of geometrical dimensioning and
	tolerancing (GD & T) in drawing. (Minimum 5 Nos.)
	Creating 3D machine components (Minimum 4 Nos). Creating 3D assembly models of
Part B	Socket and spigot joint, Knuckle Joint, Rigid flange couplings, Bushed Pin flexible
	coupling, Plummer block, Screw jack etc. Modeling of surfaces of the given geometry like
	helmet, mouse, fender of automobiles etc. Parametric modeling of standard parts such as
	nuts, bolts, rivets, washers etc (Minimum 3 Nos).
Out of 12	exercises, 5 should be from Part A and 7 should be from Part B

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Apply the knowledge of engineering drawings to interpret 2D drawings and model them using software.	К3				
CO2	Prepare standard assembly models and drawings of machine components using part drawings	K1				
CO3	Practice GD & T in models as well as drawings	K2				
CO4	Apply parameterisation for the quick modeling of standard parts	К3				
CO5	Model external surfaces of common objects	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2		3					3		
CO2	3		2		3					3		
CO3	3		2		3					3		
CO4	3		2		3					3		
CO5	3		2		3					3		

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Geometric Dimensioning and Tolerancing	James D. Medows	James D. Meadows & Associates, Inc.			
2	Fundamentals of Geometric Dimensioning and Tolerancing	Alex Krulikowski	Delmar Cengage Learning			
3	CAD, 3D Modeling, Engineering Analysis, and Prototype Experimentation	Jeremy Zhang Li	Springer	2010 5th Edition		

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	Engineering Graphics and Design - Course (nptel.ac.in)				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation
 of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S3

MATERIALS TESTING LAB

Course Code	PCMEL308	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. Characterize the mechanical behaviour of materials under various loading conditions.
- 2. Relate material properties and microstructure to engineering applications.

Expt. No.	Experiments (Minimum 10 experiments)
1	Evaluate the tensile properties of a ductile material (mild steel, high-strength steel, or tor-
	steel) using a Universal Testing Machine (UTM) equipped with an extensometer.
2	Conduct compressions test on a ductile material (mild steel, tor-steel, or high-strength
	steel) using a Universal Testing Machine (UTM) equipped with an extensometer.
3	Determine the tensile properties of cast iron (a brittle material) using a Universal Testing
	Machine (UTM) equipped with an extensometer.
4	Determine the shear strength of a mild steel rod using a shear test.
5	Perform Brinell/Vickers/Rockwell hardness tests on a given material
6	Determine the torsional rigidity of mild steel/copper/brass rods.
7	Evaluate the flexural stiffness (flexural rigidity) of mild steel/copper/brass specimens
	using a three-point bend test on a Universal Testing Machine (UTM)
8	Determine the notch toughness of the material at room temperature using Izod and Charpy
	impact testing.
9	Investigate the effect of coil type (close-coiled vs. open-coiled) and arrangement (series
	vs. parallel) on spring stiffness.
10	Microstructure of mild steel/copper/ brass/aluminium using opticalmicroscope, double
	disc polishing machine, emery papers and etchant.
11	Analyse the fracture surface morphology of a ductile or brittle material using an optical
	microscope for fractographic characterisation.
12	Evaluate the fracture toughness of a material with a Universal Testing Machine (UTM)
13	To study the procedure for plotting S-N curve using Fatigue testing machine

14	Perform stress analysis using photoelasticity.	
15	Measure the deformation (strain) of an object using strain gauges.	
16	Perform a bending test on a wooden beam to assess its load-carrying capacity.	

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Evaluate the mechanical properties of different materials under various loading conditions.	К3
CO2	Relate material microstructure to its mechanical behaviour.	K4
CO3	Analyse the effect of design features on the performance of mechanical components.	K4
CO4	Utilize experimental techniques to determine material properties.	К3
CO5	Apply fundamental engineering principles to analyse the behaviour of structures under load.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			2								
CO2	3			2								
CO3	2		3									
CO4	2			3	2							
CO5	3	2			2							

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Callister's Materials Science and	D. Wayne Callister and	Wiley	10th Ed			
	Engineering	David G. Rethwisch	Whey	(2018)			
2	Mechanical Testing and	Howard Kuhn; Dana	ASM International	Volume 8			
	Evaluation	Medlin	ASIVI IIICI II atioliai	(2000)			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Mechanics of Materials	James M. Gere and Barry J. Goodno	Cengage Learning	9th Ed (2022)		
2	Introduction to Materials Science for Engineers	James F. Shackelford	Pearson	8th Ed (2022)		

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc23_mm38/preview				
2	https://archive.nptel.ac.in/courses/112/107/112107146/				
3	https://archive.nptel.ac.in/courses/112/106/112106293/				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures,
 accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

• Procedure Understanding and Description: Clarity in explaining the

procedure and understanding each step involved.

- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted