SEMESTER 3

ELECTRICAL & ELECTRONICS ENGINEERING

GROUP B

	THIRD SEMESTER (July-December)													
Sl. No:		Course Code	Course Type	Course Category	Course Title (Course Name)		Credit Structure			ss	Total Marks		Credits	Hrs./ Week
1,00	Slot	3040	3 F	Cat	` '	L	Т	P	R		CIA	ESE		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	A	GYMAT30 1	BSC	GC	Mathematics For Electrical Science and Physical Science – 3		0	0	0	4.5	40	60	3	3
2	В	PCEET302	PC	PC	Circuits & Networks		1	0	0	5	40	60	4	4
3	С	PCEET303	PC	PC	DC Machines & Transformers		1	0	0	5	40	60	4	4
4	D	PBEET304	PC- PBL	РВ	Analog Electronics	3	0	0	1	5.5	60	40	4	4
5	F	GNEST305	ESC	GC	Group B, C and D: Introduction to Artificial Intelligence and Data Science		1	0		5	40	60	4	4
6	G S3	UCHUT347	HMC*		Engineering Ethics and Sustainable Development	2	0	0	0	3	50	50	2	2
7	L	PCEEL307	PCL	PC	Circuits and Measurements Lab	0	0	3	0	1.5	50	50	2	3
8	Q	PCEEL308	PCL	PC	Analog Electronics Lab	0	0	3	0	1.5	50	50	2	3
9	R/M		VAC		Remedial/Minor Course		1	0	0	5			4*	4*
Total	otal 31/36 25/29* 27/31*							27/31*						
Bridg	ridge Course for Lateral Entry Students: Total 15 Hrs.													

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE – 3

(Common to B & C Groups)

Course Code	GYMAT301	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in complex numbers.	Course Type	Theory

Course Objectives:

- 1. To introduce the concept and applications of Fourier transforms in various engineering fields.
- 2. To introduce the basic theory of functions of a complex variable, including residue integration and conformal transformation, and their applications

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Fourier Integral, From Fourier series to Fourier Integral, Fourier Cosine and Sine integrals, Fourier Cosine and Sine Transform, Linearity, Transforms of Derivatives, Fourier Transform and its inverse, Linearity, Transforms of Derivative. (Text 1: Relevant topics from sections 11.7, 11.8, 11.9)	9
2	Complex Function, Limit, Continuity, Derivative, Analytic functions, Cauchy-Riemann Equations (without proof), Laplace's Equations, Harmonic functions, Finding harmonic conjugate, Conformal mapping, Mappings of $w=z^2$, $w=e^z, w=\frac{1}{z}, -w=\sin z$. (Text 1: Relevant topics from sections 13.3, 13.4, 17.1, 17.2, 17.4)	9
3	Complex Integration: Line integrals in the complex plane (Definition & Basic properties), First evaluation method, Second evaluation method, Cauchy's integral theorem (without proof) on simply connected domain, Independence of path, Cauchy integral theorem on multiply connected	9

	domain (without proof), Cauchy Integral formula (without proof). (Text 1: Relevant topics from sections 14.1, 14.2, 14.3)	
4	Taylor series and Maclaurin series, Laurent series (without proof), Singularities and Zeros – Isolated Singularity, Poles, Essential Singularities, Removable singularities, Zeros of Analytic functions – Poles and Zeros, Formulas for Residues, Residue theorem (without proof), Residue Integration- Integral of Rational Functions of $cos\theta$ and $sin\theta$. (Text 1: Relevant topics from sections 15.4, 16.1, 16.2, 16.3, 16.4)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Determine the Fourier transforms of functions and apply them to solve problems arising in engineering.	К3			
CO2	Understand the analyticity of complex functions and apply it in conformal mapping.	К3			
CO3	Compute complex integrals using Cauchy's integral theorem and Cauchy's integral formula.	К3			
CO4	Understand the series expansion of complex function about a singularity and apply residue theorem to compute real integrals.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books							
Sl. No Title of the Book		Name of the Author/s	Name of the Publisher	Edition and Year				
1	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Complex Analysis	Dennis G. Zill, Patrick D. Shanahan	Jones & Bartlett	3 rd edition, 2015					
2	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023					
3	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	44 th edition, 2018					
4	Fast Fourier Transform - Algorithms and Applications	K.R. Rao, Do Nyeon Kim, Jae Jeong Hwang	Springer	1 st edition, 2011					

CIRCUITS & NETWORKS

Course Code	PCEET302	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Introduction to Electrical Engineering	Course Type	Theory

Course Objectives:

- 1. This course analyses electrical circuits in steady-state and dynamic conditions with DC and sinusoidal excitations
- 2. It also describes the two-port networks in terms of various parameters.

SYLLABUS

Module No.	Syllabus Description			
	Mesh analysis and nodal analysis (Review only)- super mesh and super			
	node - Superposition principle - source transformation - analysis with DC			
	and AC (sinusoidal) excitation			
1	Thevenin's theorem - Norton's theorem - Maximum power transfer			
	theorem - analysis with DC and AC (sinusoidal) excitation with	12		
	independent and dependent sources.			
	Reciprocity Theorem - application to the analysis of DC Circuits.			
	Resonance - series resonance- resonant frequency - variations of			
	impedance and current with frequency - bandwidth - quality factor-			
	parallel resonance (series RL in parallel with C -calculation of resonant			
_	frequency).			
2	Power in 3-phase circuits – complex power - active, reactive and apparent	12		
	power in balanced load – steadystate analysis of 3-wire unbalanced delta	12		
	connected circuit - steady state analysis of 3-phase 4-wire and 3-wire (using			
	Millman's theorem only) unbalanced star connected circuit -neutral shift			
_	Laplace transforms(Review only)			
3	Transient response of simple series and parallel RL and RC circuits with	12		

	DC excitation and initial conditions – natural response and forced response	
	- time constant - solution using Laplace transforms - transformed circuits	
	in s-domain – solution using mesh analysis and nodal analysis	
	Transient response of series RLC circuit with DC excitation and initial	
	conditions - damping -overdamped, underdamped, critically damped and	
	undamped - solution using Laplace transforms	
	Transient response of simple series and parallel RL and RC circuits with	
	sinusoidal excitation and zero initial conditions – solution using Laplace	
	transforms	
	Two port networks – Z, Y, h, T parameters – conditions for symmetry and	
	reciprocity – relationship between parameters – interconnection of two port	
	networks – series, parallel and cascade	
4	Coupled circuit – dot convention – fixing of dots – coefficient of coupling -	9
	conductively coupled equivalent circuit - sinusoidal steady state analysis of	
	coupled circuits.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply circuit theorems to solve complex DC and AC electric networks	К3
CO2	Apply transformation from time domain to s-domain, solve dynamic electric circuits.	К3
CO3	Solve series and parallel resonant circuits	К3
CO4	Analyse three-phase networks in star and delta configurations under balanced and unbalanced conditions.	К3
CO5	Describe two-port networks in terms of various parameters.	К3
CO6	Explain the steady-state behaviour of coupled circuits with sinusoidal excitation	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3										3
CO3	3	3										3
CO4	3	3										3
CO5	3	3										3
CO6	3	3										3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Network Analysis	Van Valkenburg	Pearson	3 rd 2019				
2	Network Analysis and	Ravish R Singh	McGraw Hill	2 nd 2019				
2	Synthesis		Education					
3	Electric Circuits & Networks	Suresh Kumar	Pearson	Ist 2008				
4	Circuits and Networks,	A Sudhakar,	McGraw Hill	5 th 2017				
4	Analysis and Synthesis	Shyammohan S Palli	Education	3 2017				

DC MACHINES & TRANSFORMERS

Course Code	PCEET303	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. Describe the constructional details, working and analyse the performance of DC machines and transformers under various load conditions.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Constructional details of dc machines - armature winding - lap and wave -	
	simplex, progressive only - winding diagrams of simplex, lap wound,	
	double layer, 12-slot, 4-pole, dc armature with 12 commutator segments -	
	winding diagram of simplex wave wound, double layer, 16-slot, 6-pole, dc	
	armature with 12 commutator segments (winding diagram not for	
	evaluation)	
	DC generator - principle of operation of DC generator - emf equation -	
	numerical problems	
	Classification DC generators – steady-state equations – numerical	
1	problems	
	DC shunt generator - no-load characteristics - critical field resistance,	12
	critical speed, voltage build-up - load characteristics – numerical problems	
	Armature reaction - cross magnetising & demagnetising effect	
	(computation of ampere-turns not required) – compensating winding –	
	interpoles – commutation (concept only) – numerical problems	
	Power flow diagram – losses and efficiency – maximum efficiency -	
	numerical problems	
	Parallel operation of DC shunt generators – load sharing – numerical	
	problems	

	DC motor – back emf – torque equation – numerical problems	
	Classification of DC motors – steady-state equations – numerical problems	
	Characteristics of DC motors – numerical problems	
	Starting of DC motors – 3-point starter	
	Braking – regenerative braking, dynamic braking and plugging (concepts	
2	only)	
	Speed control of DC shunt and series motors – field control and armature	12
	control – numerical problems	
	Power flow diagram – losses and efficiency – numerical problems	
	Testing - Swinburne's test - Hopkinson's test - retardation test - separation	
	of rotational losses - numerical problems	
	Single phase transformers – constructional details - principle of operation -	
	EMF equation - ideal and practical transformer – numerical problems	
	Operation on no load and on load - phasor diagram at different load	
3	conditions - equivalent circuit - voltage regulation – numerical problems	11
	Losses and efficiency - condition for maximum efficiency - numerical	
	problems Testing of transformers - polarity test - OC test, SC test -	
	Sumpner's test – separation of losses – numerical problems	
	Autotransformer – saving of copper – numerical problems	
	3- phase transformer – construction - different connections of 3-phase	
	transformers - Y-Y, Δ - Δ , Y- Δ , Δ -Y – numerical problems	
	Difference between power transformer and distribution transformer – all-	
	day efficiency – numerical problems	
4	Scott connection for 3-phase to 2-phase conversion	9
	Vector groupings – Yy0, Dd0, Yd1, Yd11, Dy1, Dy11	
	Parallel operation of 1-phase and 3-phase transformers - essential and	
	desirable conditions	
	On load and off-load tap-changers	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Describe the constructional details of DC machines	К2			
CO2	Analyse the performance DC generator under various load conditions	К3			
CO3	Analyse the performance DC motor under various load conditions	К3			
CO4	Analyse the performance of 1-phase transformer and auto-transformer under various load conditions.	К3			
CO5	Describe the constructional details and operation of 3-phase transformers.	K2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										3
CO2	3	3										3
CO3	3	3										3
CO4	3	3										3
CO5	3	2										3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year					
1	Electrical Machinery	P.S. Bimbhra	Khanna Publishers	7 th edition 2021					
2	Electric Machines	D P Kothari & I J Nagrath	Tata McGraw Hill	5 th edition 2017					
3	DC Machines & Transformers	K Murugesh Kumar	Vikas Publishing House	2 nd edition 2004					
4	Theory & Performance of Electrical Machines	J.B. Gupta	S K Kataria	15 th edition 2022					

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	NPTEL https://archive.nptel.ac.in/courses/108/105/108105155/					

ANALOG ELECTRONICS

Course Code	PBEET304	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. At the end of the course the student will be able to design of analog electronic systems using BJT, FET and OP-Amp

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Review of Bipolar Junction Transistor- Introduction to DC Biasing – Base Bias – Voltage Divider Bias Common Emitter Amplifier – AC concepts —Role of coupling capacitors and emitter bypass capacitor- Common Emitter AC equivalent circuit-	
1	Amplifier Gain - Calculation of amplifier gains and impedances using h parameter equivalent circuit. Emitter Follower Amplifier Power Amplifiers -AC load line - RC Coupled amplifiers - Transformer	9
	coupled Class A amplifiers – Class B amplifiers(Derivation of efficiency) – Class AB amplifiers – Class C and Class D amplifiers Introduction to JFET – JFET biasing circuits – Common Source	
2	Amplifier Introduction to MOSFET -MOSFET construction -D-MOSFET, E-MOSFET-Complementary MOSFET Amplifier Frequency Response — Basic concepts — BJT amplifier Frequency response — FET amplifier Frequency Response Feedback and Oscillator circuits — Feedback concepts — Feedback	9
	connection types – Practical Feedback circuits Oscillators – Phase Shift Oscillator (Expression of frequency oscillation)–	

	Wien Bridge Oscillator – Tuned Oscillator circuits – Crystal Oscillator	
3	Introduction to Operational Amplifiers (Op-Amps) — Operation Overview — Differential amplifiers and Op-Amp Specifications -Gain, CMRR and slew rate Op- Amp Circuits — Inverting Amplifiers — Non inverting Amplifiers — Summing and Difference Amplifiers — Instrumentation Amplifiers Differentiator and Integrator circuits-practical circuits Comparators: Zero crossing and voltage level detectors, Schmitt trigger.	9
4	Active Filters – Butterworth, Chebyshev and Bessel Filters, Low pass filter – high pass filter -band pass and notch filters- Butterworth Wave form generation using Op-Amps: Square, triangular and ramp generatorcircuits using Op-Amp- Effect of slew rate on waveform generation. Timer555 IC: Internal diagram of 555 IC— Astable and Monostable multivibrators using 555 IC	9

Suggestion on Project Topics

In this curriculum Analog Electronics is the first Project Based Learning Course for the Electrical and Electronics Engineering students.

Project-Based Learning (PBL) is a student-centered teaching approach where the teacher serves as a facilitator and advisor.

Students are encouraged to think the need of the society and industry. Select a project topic relevant to the present society as well as covers topics in the syllabus.

In the first step they start defining problem statement with requirements and specifications.

In the second step, students work in groups to discover optimal and creative solutions by sharing their unique and inventive ideas for solutions.

They begin designing and developing components using contemporary tools and technology in the third level. Design the circuit and simulate it using available simulation tools. Also perform the hardware implementation to make it a product.

Project Topic Suggestions:

- 1. Regulated power supply
- 2. Electronic Thermometer with diode/transistor/instrumentation amplifier
- 3. Audio Amplifier
- 4. Multistage amplifiers
- 5. Biomedical signal processing devices
- 6. RF Transmitter

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	• 2 questions will be given from each module,	
module.	out of which 1 question should be answered.	
• Total of 8 Questions,	Each question can have a maximum of 2 sub	40
each carrying 2 marks	divisions.	40
(8x2 =16 marks)	Each question carries 6 marks.	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Design BJT and FET amplifier circuits	К3			
CO2	Design Oscillator circuits	К3			
CO3	Design and develop various OPAMP application circuits.	К3			
CO4	Implementation of active filters	K4			
CO5	Implement an electronic hardware circuit for the solution of a real time problem	K4			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							
CO2	3	3	3	3	3							
CO3	3	3	3	3	3							
CO4	3	3	3	3	3							
CO5	3	3	3	3	3	3	2	1	3	3	3	3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introductory Electronic Devices and Circuits	Robert T Paynter	Pearson Education					
2	Electronic devices and Circuit Theory	Boylestad R. L. and L. Nashelsky	Pearson Education					
3	Electronic Circuits : Analysis and Design	Donald A Neaman	McGraw Hill Companies					

	Reference Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year				
1	Fundamentals of Analog Circuits	Floyd T.L.	Pearson Education					
2	Op-Amps and Linear Integrated Circuits	Gayakward R. A.	PHI Learning Pvt. Ltd.					
3	Electronic Devices and Circuits	David A Bell	Oxford Higher Education					
4	Linear Integrated Circuits	Choudhury R.	New Age International Publishers					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://archive.nptel.ac.in/courses/108/105/108105158/						
2	https://archive.nptel.ac.in/courses/108/102/108102112/						
3	https://nptel.ac.in/courses/108106084						

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted Marks		
1	Project Planning and Proposal	5		
2	Contribution in Progress Presentations and Question Answer Sessions	4		
3	Involvement in the project work and Team Work	3		
4	Execution and Implementation	10		
5	Final Presentations	5		
6	Project Quality, Innovation and Creativity	3		
	Total	30		

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- · Research and background understanding
- · Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Course Code	GNEST305	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Demonstrate a solid understanding of advanced linear algebra concepts, machine learning algorithms and statistical analysis techniques relevant to engineering applications, principles and algorithms.
- **2.** Apply theoretical concepts to solve practical engineering problems, analyze data to extract meaningful insights, and implement appropriate mathematical and computational techniques for AI and data science applications.

SYLLABUS

Module No.	Syllabus Description			
	Introduction to AI and Machine Learning: Basics of Machine Learning -			
	types of Machine Learning systems-challenges in ML- Supervised learning			
	model example- regression models- Classification model example- Logistic			
1	regression-unsupervised model example- K-means clustering. Artificial			
	Neural Network- Perceptron- Universal Approximation Theorem (statement			
	only)- Multi-Layer Perceptron- Deep Neural Network- demonstration of			
	regression and classification problems using MLP.(Text-2)			
	Mathematical Foundations of AI and Data science: Role of linear algebra			
	in Data representation and analysis - Matrix decomposition- Singular Value			
2	Decomposition (SVD)- Spectral decomposition- Dimensionality reduction	11		
	technique-Principal Component Analysis (PCA). (Text-1)			
3	Applied Probability and Statistics for AI and Data Science: Basics of	11		
	probability-random variables and statistical measures - rules in probability-	11		

	Bayes theorem and its applications- statistical estimation-Maximum						
	Likelihood Estimator (MLE) - statistical summaries- Correlation analysis-						
	linear correlation (direct problems only)- regression analysis- linear regression (using least square method) (Text book 4)						
	Basics of Data Science: Benefits of data science-use of statistics and						
	Machine Learning in Data Science- data science process - applications of						
	Machine Learning in Data Science- modelling process- demonstration of ML						
4	applications in data science- Big Data and Data Science. (For visualization						
-	the software tools like Tableau, PowerBI, R or Python can be used. For	11					
	Machine Learning implementation, Python, MATLAB or R can be used.)						
	(Text book-5)						

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Apply the concept of machine learning algorithms including neural networks and supervised/unsupervised learning techniques for engineering applications.	К3			
CO2	Apply advanced mathematical concepts such as matrix operations, singular values, and principal component analysis to analyze and solve engineering problems.	К3			
CO3	Analyze and interpret data using statistical methods including descriptive statistics, correlation, and regression analysis to derive meaningful insights and make informed decisions.	К3			
CO4	Integrate statistical approaches and machine learning techniques to ensure practically feasible solutions in engineering contexts.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								
CO2	3	3	3	3								
CO3	3	3	3	3								
CO4	3	3	3	3								
CO5	3	3	3	3								

	Text Books									
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year						
1	Introduction to Linear Algebra	Gilbert Strang	Wellesley-Cambridge Press	6 th edition, 2023						
2	Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow	Aurélien Géron	O'Reilly Media, Inc.	2 nd edition,202						
3	Mathematics for machine learning	Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong	Cambridge University Press	1 st edition. 2020						
4	Fundamentals of mathematical statistics	Gupta, S. C., and V. K. Kapoor	Sultan Chand & Sons	9 th edition, 2020						
5	Introducing data science: big data, machine learning, and more, using Python tools	Cielen, Davy, and Arno Meysman	Simon and Schuster	1 st edition, 2016						

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Data science: concepts and practice	Kotu, Vijay, and Bala Deshpande	Morgan Kaufmann	2 nd edition, 2018			
2	Probability and Statistics for Data Science	Carlos Fernandez- Granda	Center for Data Science in NYU	1 st edition, 2017			
3	Foundations of Data Science	Avrim Blum, John Hoperoft, and Ravi Kannan	Cambridge University Press	1 st edition, 2020			
4	Statistics For Data Science	James D. Miller	Packt Publishing	1st edition, 2019			
5	Probability and Statistics - The Science of Uncertainty	Michael J. Evans and Jeffrey S. Rosenthal	University of Toronto	1 st edition, 2009			
6	An Introduction to the Science of Statistics: From Theory to Implementation	Joseph C. Watkins	chrome- extension://efaidnb mnnnibpcajpcglclef indmkaj/https://ww w.math.arizo	Preliminary Edition.			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/106/106106198/				
2	https://archive.nptel.ac.in/courses/106/106/106106198/ https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/resources/lecture-29-singular-value-decomposition/				
3	https://ocw.mit.edu/courses/18-650-statistics-for-applications-fall-2016/resources/lecture-19-video/				
4	https://archive.nptel.ac.in/courses/106/106/106106198/				

SEMESTER S3/S4

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Equip with the knowledge and skills to make ethical decisions and implement gendersensitive practices in their professional lives.
- 2. Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue,	
	Respect for others, Profession and Professionalism, Ingenuity, diligence	
	and responsibility, Integrity in design, development, and research domains,	
	Plagiarism, a balanced outlook on law - challenges - case studies,	
	Technology and digital revolution-Data, information, and knowledge,	
	Cybertrust and cybersecurity, Data collection & management, High	
	technologies: connecting people and places-accessibility and social impacts, Managing conflict, Collective bargaining, Confidentiality, Role	
1		
	of confidentiality in moral integrity, Codes of Ethics.	
	Basic concepts in Gender Studies - sex, gender, sexuality, gender	
	spectrum: beyond the binary, gender identity, gender expression, gender	
	stereotypes, Gender disparity and discrimination in education,	
	employment and everyday life, History of women in Science & Technology,	
	Gendered technologies & innovations, Ethical values and practices in	

	connection with gender - equity, diversity & gender justice, Gender policy					
	and women/transgender empowerment initiatives.					
	Introduction to Environmental Ethics: Definition, importance and					
	historical development of environmental ethics, key philosophical theories					
	(anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering					
	Principles: Definition and scope, triple bottom line (economic, social and					
	environmental sustainability), life cycle analysis and sustainability metrics.					
2	Ecosystems and Biodiversity: Basics of ecosystems and their functions,	6				
	Importance of biodiversity and its conservation, Human impact on					
	ecosystems and biodiversity loss, An overview of various ecosystems in					
	Kerala/India, and its significance. Landscape and Urban Ecology:					
	Principles of landscape ecology, Urbanization and its environmental impact,					
	Sustainable urban planning and green infrastructure.					
	Hydrology and Water Management: Basics of hydrology and water cycle,					
	Water scarcity and pollution issues, Sustainable water management practices,					
	Environmental flow, disruptions and disasters. Zero Waste Concepts and					
	Practices: Definition of zero waste and its principles, Strategies for waste					
	reduction, reuse, reduce and recycling, Case studies of successful zero waste					
	initiatives. Circular Economy and Degrowth: Introduction to the circular					
3	economy model, Differences between linear and circular economies,					
	degrowth principles, Strategies for implementing circular economy practices					
	and degrowth principles in engineering. Mobility and Sustainable					
	Transportation: Impacts of transportation on the environment and climate,					
	Basic tenets of a Sustainable Transportation design, Sustainable urban					
	mobility solutions, Integrated mobility systems, E-Mobility, Existing and					
	upcoming models of sustainable mobility solutions.					
	Renewable Energy and Sustainable Technologies: Overview of renewable					
	energy sources (solar, wind, hydro, biomass), Sustainable technologies in					
	energy production and consumption, Challenges and opportunities in					
	renewable energy adoption. Climate Change and Engineering Solutions:					
4	Basics of climate change science, Impact of climate change on natural and	(
4	human systems, Kerala/India and the Climate crisis, Engineering solutions to	6				
	mitigate, adapt and build resilience to climate change. Environmental					
	Policies and Regulations: Overview of key environmental policies and					
	regulations (national and international), Role of engineers in policy					
	implementation and compliance, Ethical considerations in environmental					

policy-making. Case Studies and Future Directions: Analysis of real-world case studies, Emerging trends and future directions in environmental ethics and sustainability, Discussion on the role of engineers in promoting a sustainable future.

Course Assessment Method (CIE: 50 marks, ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

Sl. No.	Item	Particulars	Group/I ndividua l (G/I)	Marks
1	Reflective Journal	I	5	
2	Micro project (Detailed documentation of	a) Perform an Engineering Ethics Case Study analysis and prepare a report b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics	G	8
	the project, including methodologies, findings, and	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
	reflections)	3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12
3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
	I	Total Marks		50

^{*}Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- **Application of Concepts**: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- Presentation Skills: Clarity, coherence, and professionalism in the final presentation.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	K5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011			
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006			
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023			
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019			
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012			
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.			
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014			

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements
 calculate the water footprint, how to reduce the footprint, how to increase supply through

- rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala

Module-IV

- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption - What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

CIRCUITS AND MEASUREMENTS LAB

Course Code	PCEEL307	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:0:3	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	Lab

Course Objectives:

- 1. To train the students to familiarize and practice various measuring instruments and different transducers for measurement of physical parameters.
- 2. Students will also be introduced to a team working environment where they develop the necessary skills for planning, preparing and implementing basic instrumentation systems

Expt. No.	Experiments
1	Verification of Superposition theorem. *
2	Verification of (a) Thevenin's theorem and Maximum Power Transfer theorem.* (b) Calculation of Norton's equivalent circuit (calculation only).
3	Determination of impedance, admittance and power factor in RLC series/ parallel circuit and to study the effect of reactive components on power factor.
4	Measurement of two port network parameters.
5	Step response of RLC circuit (suggested to use DSO).
6	3-phase power measurement using one-wattmeter and two-wattmeter methods, and determination of reactive/apparent power drawn.*
7	Resistance measurement using Wheatstone's bridge and extension of range of voltmeters.
8	Resistance measurement using Wheatstone's bridge and extension of range of voltmeters.
9	Extension of instrument range using instrument transformers (CT and PT).
10	Calibration of 1-phase Energy meter at various power factors and phantom loading (minimum 3 conditions) *.
11	Calibration of 3-phase Energy meter using standard wattmeter
12	Determination of B-H curve, μ-H curve and μ-B curve of a magnetic specimen.

13	Measurement of self inductance, Mutual inductance and Coupling coefficient of a 1-phase						
	transformer.						
14	Measurement of Capacitance/ Inductance/ frequency using AC bridges.						
15	Determination of characteristics of Thermal sensors: Thermistor, Thermocouple and						
	RTD*.						
16	Determination of P-V characteristics of solar PV array and determination of fill factor						
10	(study of partial shading may be included).						
17	Determination of insulation resistance and earth resistance.						
18	Calibration of meters (Ammeter/Voltmeter) using Potentiometers.						
19	Determination of characteristics of transducers: LVDT, Strain gauge, and Load-cell						
20	Simulation of circuits using software platforms like PSpice/LT spice / MATLAB /						
20	Multisim etc.*						
21	Implementation of IoT-based data acquisition system						
	Demo Experiments:						
	(a) Measurement of energy using TOD meter / Digital meters/ Bidirectional meter						
	(b) Measurement of electrical variables and frequency using CRO and DSO						
22	(c) Harmonic analysers						
	(d) Instrumentation systems for Gas / Fire/ Smoke Detection Systems.						
	(e) Virtual instrumentation experiments using LABVIEW						

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyse voltage current phasor relations of RLC circuits	К3
CO2	Verify DC network theorems by setting up various electric circuits	К3
CO3	Measure power in single and three phase circuits by various methods	К3
CO4	Determine the calibration characteristics of various meters used in electrical systems	К3
CO5	Determine magnetic characteristics of different electrical devices	К3
CO6	Analyse the characteristics of various types of transducer systems	К3
CO7	Determine electrical parameters using various bridges	К3
CO8	Develop simulation models of electric circuits using modern simulation tools.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	-	-	-	-	-	2			3
CO2	3	3	2	-	-	-	-	-	2	-	-	3
CO3	3	3	-	-	-	-	-	-	2	-	-	3
CO4	3	3	-	-	-	-	-	-	2	-	-	3
CO5	3	3	-	-	-	-	-	-	2	-	-	3
CO6	3	3	2	-	3	-	-	-	2	-	-	3
CO7	3	3	-	-	-	-	-	-	2	-	-	3
CO8	3	3	2	-	3	-	-	-	3	-	-	3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year							
1	A course in Electrical and Electronic Measurements & Instrumentation,	A. K. Sawhney:	Dhanpat Rai Publishers								
2	A course in Electrical & Electronic Measurement & Instrumentation	J. B. Gupta:	S. K. Kataria & Sons Publishers								
3	Electronic Instrumentation	Kalsi H. S.:	Tata McGraw Hill, New Delhi.	3							

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation
 of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- · Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

ANALOG ELECTRONICS LAB

Course Code	PCEEL308	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	Lab

Course Objectives:

- 1. Design of Transistor and Op amp Circuits
- 2. Simulation and hardware implementation of the circuits

Expt. No.	Experiments					
Pre Lab	Measurement of current, voltage, frequency and phase shift of signal in a RC network					
	using oscilloscope.					
Assignment	Introduction to circuit simulation using any circuit simulation software.					
1 Clipping and clamping circuits using diodes.						
2	Basic RC circuits- High pass and Low pass filters					
3	RC coupled amplifier using BJT in CE configuration-Measurement of gain, BW and					
3	plotting of frequency response.					
4	Emitter Follower Amplifier					
5	JFET amplifier-Measurement of gain, BW and plotting of frequency response.					
6	MOSFET amplifier					
7	Design and testing of voltage regulators – Zener and series					
8	Design and set up of inverting and non-inverting amplifier.					
9	Op-amps circuits – Scale changer, adder, integrator, and differentiator.					
10	Precision rectifier using Op-amp.					
11	Op- Amp Oscillators – RC Phase shift and Wien Bridge Oscillator					
12	Op Amp Oscillator - LC Oscillators- Colpitts or Hartley Oscillator					
13	Waveform generation- Square, triangular and saw tooth waveform generation using					
13	OPAMPs.					

14	Basic comparator and Schmitt trigger circuits using Op-amp (Use comparator ICs such					
17	as LM311).					
15	Active Filters (High Pass and Low pass-one each)					
16	Instrumentation Amplifier					
17	Astable and Monostable circuit using 555IC.					
18	Introduction to PCB layout software.					

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Use the various electronic instruments and for conducting experiments.	K1
CO2	Design and develop various electronic circuits using diodes and Zener diodes.	К3
CO3	Design and implement amplifier and oscillator circuits using BJT and JFET.	К3
CO4	Design and implement basic circuits using IC (OPAMP and 555 timers).	К3
CO5	Simulate electronic circuits using any circuit simulation software.	К3
CO6	Use PCB layout software for circuit design	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	2	3	3	3	3				3	3		
CO3	2	3	3	3	3				3	3		
CO4	2	3	3	3	3				3	3		
CO5	2	3	3	3	3				3	3		
CO6	3								3	3		

^{1:} Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Introductory Electronic Devices and Circuits	Robert T Paynter	Pearson Education								
2	Electronic devices and Circuit Theory	Boylestad R. L. and L. Nashelsky	Pearson Education								
3	Electronic Circuits : Analysis and Design	Donald A Neaman	McGraw Hill Companies								

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.

• Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation
 of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	K5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011					
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006					