SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT		
A	GAMAT301	Mathematics for Information Science-3	3-0-0	4	4		
В	PCCST302	Theory of Computation	3-1-0	A_4V	4		
C	PCCST303	Data Structures and Algorithms	3-1-0	4	4		
D	PBCST304	Object Oriented Programming	3-0-0	4	4		
F	GAEST305	Digital Electronics & Logic Design	3-1-0	3	3		
G	UCHUT346	Economics for Engineers	2-0-0	2			
L	PCCSL307	Data Structures Lab	0-0-3	3	2		
Q	PCCDL308	Python and Statistical Modeling Lab	0-0-3	3	2		
R/M/ H		Remedial/Minor/Honourscourse*	3-1-0	4	4		
	TOTAL 29* 23/27						
* Exclu	* Excluding Hours to be engaged for Remedial/Minor/Honours course.						

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/ Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

MATHEMATICS FOR COMPUTER AND INFORMATION SCIENCE-3

(Group A)

Course Code	GAMAT301	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic calculus	Course Type	Theory

Course Objectives:

1. To familiarize students with the foundations of probability and analysis of random processes used in various applications in engineering and science.

Module No.	Syllabus Description	Contact Hours
1	Random variables, Discrete random variables and their probability distributions, Cumulative distribution function, Expectation, Mean and variance, the Binomial probability distribution, the Poisson probability distribution, Poisson distribution as a limit of the binomial distribution, Joint pmf of two discrete random variables, Marginal pmf, Independent random variables, Expected value of a function of two discrete variables. [Text 1: Relevant topics from sections 3.1 to 3.4, 3.6, 5.1, 5.2]	9
2	Continuous random variables and their probability distributions, Cumulative distribution function, Expectation, Mean and variance, Uniform, Normal and Exponential distributions, Joint pdf of two Continuous random variables, Marginal pdf, Independent random variables, Expectation value of a function of two continuous variables. [Text 1: Relevant topics from sections 3.1, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2]	9

3	Limit theorems: Markov's Inequality, Chebyshev's Inequality, Strong Law of Large Numbers (Without proof), Central Limit Theorem (without proof), Stochastic Processes: Discrete-time process, Continuous-time process, Counting Processes, The Poisson Process, Interarrival times (Theorems without proof) [Text 2: Relevant topics from sections 2.7, 2.9, 5.3]	9
4	Markov Chains, Random Walk Model, Chapman–Kolmogorov Equations, Classification of States, Irreducible Markov chain, Recurrent state, Transient state, Long-Run Proportions. (Theorems without proof) [Text 2: Relevant topics from sections 4.1, 4.2, 4.3, 4.4]	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	OU
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the concept, properties and important models of discrete random variables and to apply in suitable random phenomena.	К3
CO2	Understand the concept, properties and important models of continuous random variables and to apply in suitable random phenomena.	К3
CO3	Familiarize and apply limit theorems and to understand the fundamental characteristics of stochastic processes.	К3
CO4	Solve problems involving Markov Chains, to understand their theoretical foundations and to apply them to model and predict the behaviour of various stochastic processes.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Probability and Statistics for Engineering and the Sciences	Devore J. L	Cengage Learning	9 th edition, 2016				
2	Introduction to Probability Models	Sheldon M. Ross	Academic Press	13 th edition, 2024				

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Probability and Random Processes for Electrical and Computer Engineers	John A. Gubner	Cambridge University Press	2012		
2	Probability Models for Computer Science	Sheldon M. Ross	Academic Press	1 st edition, 2001		
3	Probability, Random Variables and Stochastic Processes	Papoulis, A. & Pillai, S.U.,	Tata McGrawHill.	4 th edition, 2002		
4	Probability, Statistics and Random Processes	Kousalya Pappu	Pearson	2013		

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://onlinecourses.nptel.ac.in/noc22_mg31/preview					
2	https://onlinecourses.nptel.ac.in/noc22_mg31/preview					
3	https://archive.nptel.ac.in/courses/108/103/108103112/					
4	https://archive.nptel.ac.in/courses/108/103/108103112/					

THEORY OF COMPUTATION

(Common to CS/CA/CM/CD/CN/CC)

Course Code	PCCST302	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST205	Course Type	Theory

Course Objectives:

- 1. To introduce the concept of formal languages.
- **2.** To discuss the Chomsky classification of formal languages with a discussion on grammar and automata for regular, context-free, context-sensitive, and unrestricted languages.
- **3.** To discuss the notions of decidability and the halting problem.

Module No.	Syllabus Description				
1	Foundations (Linz, Hopcroft) Motivation for studying computability, need for mathematical modeling - automata, Introducing automata through simple models - On/Off switch, coffee vending machine. Three basic concepts: Alphabet, Strings, and Languages Finite Automata (Linz, Hopcroft) Formal definition of a finite automaton, Deterministic Finite Automata (DFA), Regular languages, Nondeterminism (guess and verify paradigm),	11			
	Formal definition of a nondeterministic finite automaton, NFA with epsilon transitions, Eliminating epsilon transitions (Proof not expected), Equivalence of NFAs and DFAs (Proof not expected) - The Subset				

	Construction. DFA State Minimization, Applications of finite automata -	
	text search, keyword recognition	
	Regular Expressions (Linz)	
	Regular Expressions (Em2)	
	The formal definition of a regular expression, Building Regular	
	Expressions, Equivalence with finite automata (Proof not expected) -	
	Converting FA to Regular Expressions, Converting Regular Expressions	
	to FA, Pattern Matching and Regular Expressions, Regular grammar,	
	Equivalence with FA - Conversion in both directions	
	Properties of Regular Languages (Linz)	
2	Closure and Decision Properties of Regular Languages (with proofs), The	
	Pumping Lemma for Regular Languages (with formal proof), Pumping	
	lemma as a tool to prove non regularity of languages	
	Context-Free Grammars and Applications (Linz)	
	Formal definition of a context-free grammar, Designing context-free	11
	grammars, Leftmost and Rightmost Derivations Using a Grammar, Parse	11
	Trees, Ambiguous Grammars, Resolving ambiguity, Inherent ambiguity,	
	CFGs, and programming languages	
	Pushdown Automata (Linz)	
	Formal definition of a pushdown automaton, DPDA and NPDA, Examples	
	of pushdown automata	
	Equivalence NPDAs and CFGs (Proof not expected) - conversions in both	
	directions	
3	Simplification of Context-Free Languages (Linz)	11
	Elimination of useless symbols and productions, Eliminating epsilon	
	productions, Eliminating unit productions, Chomsky normal form,	
	Greibach normal form,	
	Properties of Context-Free Languages (Linz)	
	The Pumping Lemma for Context-Free Languages (with formal proof),	
	Closure and Decision Properties of Context-Free Languages (with formal	
	proofs)	

	Turing Machines (Kozen)	
4	The formal definition of a Turing machine, Examples of Turing machines - Turing machines as language acceptors, Turing machines as computers of functions, Variants of Turing Machines (Proofs for equivalence with basic model not expected), Recursive and recursively enumerable languages Chomskian hierarchy, Linear bounded automaton as a restricted TM. Computability (Kozen)	11
	Church Turing thesis, Encoding of TMs, Universal Machine and Diagonalization, Reductions, Decidable and Undecidable Problems, Halting problem, Post Correspondence Problem and the proofs for their undecidability.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/	Internal Examination-1	Internal Examination- 2	Total
	Microproject	(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Classify formal languages into regular, context-free, context-sensitive, and unrestricted languages.	K2
CO2	Develop finite state automata, regular grammar, and regular expression.	К3
CO3	Model push-down automata and context-free grammar representations for context-free languages.	К3
CO4	Construct Turing Machines to accept recursive and recursively enumerable languages.	К3
CO5	Describe the notions of decidability and undecidability of problems, the Halting problem.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3
CO5	3	3	3	3								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	An Introduction to Formal Languages and Automata	Peter Linz and Susan H. Rodger	Jones and Bartlett Publishers, Inc	7/e, 2022		
2	Introduction to Automata Theory Languages And Computation	John E.Hopcroft, Jeffrey D.Ullman	Rainbow Book Distributiors	3/e, 2015		
3	Automata and Computability	Dexter C. Kozen	Springer	1/e,2007		

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Introduction to the Theory of Computation	Michael Sipser	Cengage India Private Limited	3/e, 2014
2	Introduction to Languages and the Theory of Computation	John C Martin	McGraw-Hill Education	4/e, 2010
3	Theory of Computation: A Problem-Solving Approach	Kavi Mahesh	Wiley	1/e, 2012
4	Elements of the Theory of Computation	Harry R. Lewis, Christos Papadimitriou	Pearson Education	2/e, 2015

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/104/106104148/ https://nptel.ac.in/courses/106106049				
2	https://archive.nptel.ac.in/courses/106/104/106104148/ https://nptel.ac.in/courses/106106049				
3	https://archive.nptel.ac.in/courses/106/104/106104148/ https://nptel.ac.in/courses/106106049				
4	https://archive.nptel.ac.in/courses/106/104/106104148/ https://nptel.ac.in/courses/106106049				

DATA STRUCTURES AND ALGORITHMS

(Common to CS/CA/CM/CD/CR/AI/AM/AD/CB/CN/CC/CU/CI/CG)

Course Code	PCCST303	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	UCEST105	Course Type	Theory

Course Objectives:

- 1. To provide the learner a comprehensive understanding of data structures and algorithms.
- **2.** To prepare them for advanced studies or professional work in computer science and related fields.

Module No.	Syllabus Description				
1	Basic Concepts of Data Structures Definitions; Data Abstraction; Performance Analysis - Time & Space Complexity, Asymptotic Notations; Polynomial representation using Arrays, Sparse matrix (<i>Tuple representation</i>); Stacks and Queues - Stacks, Multi-Stacks, Queues, Circular Queues, Double Ended Queues; Evaluation of Expressions-Infix to Postfix, Evaluating Postfix Expressions.	11			
2	Linked List and Memory Management Singly Linked List - Operations on Linked List, Stacks and Queues using Linked List, Polynomial representation using Linked List; Doubly Linked List; Circular Linked List; Memory allocation - First-fit, Best-fit, and Worst-fit allocation schemes; Garbage collection and compaction.	11			

	Trees and Graphs			
	Trees :- Representation Of Trees; Binary Trees - Types and Properties, Binary			
	Tree Representation, Tree Operations, Tree Traversals; Expression Trees;			
3	Binary Search Trees - Binary Search Tree Operations; Binary Heaps - Binary	11		
	Heap Operations, Priority Queue.			
	Graphs :- Definitions; Representation of Graphs; Depth First Search and			
	Breadth First Search; Applications of Graphs - Single Source All Destination.			
	Sorting and Searching			
	Sorting Techniques :- Selection Sort, Insertion Sort, Quick Sort, Merge Sort,			
4	Heap Sort, Radix Sort.	11		
4	Searching Techniques :- Linear Search, Binary Search, Hashing - Hashing	11		
	functions: Mid square, Division, Folding, Digit Analysis; Collision Resolution			
	: Linear probing, Quadratic Probing, Double hashing, Open hashing.			

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify appropriate data structures for solving real world problems.	К3
CO2	Describe and implement linear data structures such as arrays, linked lists, stacks, and queues.	К3
CO3	Describe and Implement non linear data structures such as trees and graphs.	К3
CO4	Select appropriate searching and sorting algorithms to be used in specific circumstances.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Data Structures in C	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,	Universities press,	2/e, 2007				
2	Introduction to Algorithms	Thomas H Cormen, Charles Leisesrson, Ronald L Rivest, Clifford Stein	РНІ	3/e, 2009				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Classic Data Structures	Samanta D.	Prentice Hall India.	2/e, 2018				
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication.	1/e, 2003				
3	Introduction to Data Structures with Applications	Tremblay J. P. and P. G. Sorenson	Tata McGraw Hill.	2/e, 2017				
4	Theory and Problems of Data Structures	Lipschuts S.	Schaum's Series	2/e, 2014				

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://nptel.ac.in/courses/106102064				
2	https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/				

OBJECT ORIENTED PROGRAMMING

(Common to CS/CA/CD/AM/CB/CN/CU/CG)

Course Code	PBCST304	CIE Marks	60
Teaching Hours/Week (L:T:P:R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To teach the core object-oriented principles such as abstraction, encapsulation, inheritance, and polymorphism, robust error-handling using exception mechanisms to ensure program reliability.
- **2.** To equip the learner to develop object oriented programs encompassing fundamental structures, environments, and the effective utilization of data types, arrays, strings, operators, and control statements for program flow in Java.
- **3.** To enable the learner to design and develop event-driven graphical user interface (GUI) database applications using Swing and database connection components.

Module No.	Syllabus Description				
1	Introduction to Java: Structure of a simple java program; Java programming Environment and Runtime Environment (Command Line & IDE); Java compiler; Java Virtual Machine; Primitive Data types and Wrapper Types; Casting and Autoboxing; Arrays; Strings; Vector class; Operators - Arithmetic, Bitwise, Relational, Boolean Logical, Assignment, Conditional (Ternary); Operator Precedence; Control Statements - Selection Statements, Iteration Statements and Jump Statements; Functions; Command Line Arguments; Variable Length Arguments; Classes; Abstract Classes; Interfaces. [Use proper naming conventions]	10			

	OOP Concepts :-				
	Data abstraction, encapsulation, inheritance, polymorphism, Procedural and				
	object oriented programming paradigm; Microservices.				
	Object Oriented Programming in Java :-				
	Declaring Objects; Object Reference; Introduction to Methods; Constructors;				
	Access Modifiers; <i>this</i> keyword.				
	Polymorphism:-				
	Method Overloading, Using Objects as Parameters, Returning Objects,				
	Recursion.				
	Static Members, Final Variables, Inner Classes.				
2	Inheritance - Super Class, Sub Class, Types of Inheritance, The super	8			
	keyword, protected Members, Calling Order of Constructors.				
	Method Overriding, Dynamic Method Dispatch, Using <i>final</i> with				
	Inheritance.				
	Packages and Interfaces –				
	Packages - Defining a Package, CLASSPATH, Access Protection, Importing				
	Packages.				
	Interfaces - Interfaces v/s Abstract classes, defining an interface,				
	implementing interfaces, accessing implementations through interface				
3	references, extending interface(s).	9			
	Exception Handling - Checked Exceptions, Unchecked Exceptions, try				
	Block and <i>catch</i> Clause, Multiple catch Clauses, Nested <i>try</i> Statements,				
	throw, throws and finally, Java Built-in Exceptions, Custom Exceptions.				
	Introduction to design patterns in Java: Singleton and Adaptor.				
	SOLID Principles in Java (https://www.javatpoint.com/solid-principles-				
	java)				
	Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key				
	Features, Model View Controller (MVC), Swing Controls, Components and				
	Containers, Swing Packages, Event Handling in Swings, Swing Layout				
4	Managers, Exploring Swings-JFrame, JLabel, The Swing Buttons,	10			
4	JTextField.	10			
	Event handling – Event Handling Mechanisms, Delegation Event Model,				
	Event Classes, Sources of Events, Event Listener Interfaces, Using the				
	Delegation Event Model.				
	Developing Database Applications using JDBC – JDBC overview, Types,				
	Steps, Common JDBC Components, Connection Establishment, SQL				
	•				

Fundamentals [For projects only] - Creating and Executing basic SQL	
Queries, Working with Result Set, Performing CRUD Operations with	
JDBC.	

Suggestion on Project Topics

Student should Identify a topic to be implemented as project having the following nature

- i. It must accept a considerable amount of information from the user for processing.
- ii. It must have a considerable amount of data to be stored permanently within the computer as plain files / using databases..
- iii. It must process the user provided data and the stored data to generate some output to be displayed to the user.

Examples: -

1. Design and implement the Circulation function in a Library Management System using Object-Oriented Programming (OOP) principles in Java and limited use of SQL. The system should manage the operations of a library, such as book & user management, borrowing and returning books.

Requirements

- I. Class Design
 - Book: Attributes like title, author, ISBN, genre, and status (available/borrowed).
 - User: Attributes like user ID, name, contact information, and a list of borrowed books.
 - Library: Attributes like a list of books and a list of users.
 - Librarian: Inherits from User, with additional functionalities like adding/removing books and managing users.
 - BorrowTransaction: Attributes like transaction ID, book, user, borrow date, and return date
- II. Functionalities
 - a. Book Management:
 - Add, remove, and update book details.
 - Search books by title, author, ISBN, and genre.
 - b. User Management:
 - Register new users.
 - Search users by user ID and name.
 - c. Borrowing and Returning:

- Borrow a book: Check if the book is available and if the user can borrow more books.
- Return a book: Update the book's status and remove it from the user's borrowed list.

III. Deliverables

- 1. Design Document: Describe the classes, their attributes, methods and relationships.
- 2. Source Code: Well-documented Java code implementing the described functionalities.
- 3. User Manual: Instructions on how to set up, run and use the system.
- 4. Test Cases: A suite of test cases demonstrating the functionality of the system.
- Design and implement an Online Payment Processing System using Object-Oriented Programming(OOP) principles in Java, with a focus on dynamic polymorphism. The system should support different types of payment methods and demonstrate polymorphism in processing payments.

Requirements

Class Design

- Payment: An abstract base class with common attributes and an abstract method for processing payments.
- CreditCardPayment: Inherits from Payment, with specific implementation for processing credit card payments.
- PayPalPayment: Inherits from Payment, with specific implementation for processing PayPal payments.
- BankTransferPayment: Inherits from Payment, with specific implementation for processing bank transfer payments.
- PaymentProcessor: A class to manage and process different types of payments.

b. Functionalities

- Add Payment Method: Add new payment methods (CreditCardPayment, PayPalPayment, BankTransferPayment) to the system.
- Process Payment: Demonstrate dynamic polymorphism by processing payments using different methods.

c. Deliverables

- Design Document: Describe the classes, their attributes, methods and relationships.
- Source Code: Well-documented Java code implementing the described functionalities.

- User Manual: Instructions on how to set up, run and use the system.
- Test Cases: A suite of test cases demonstrating the functionality of the system.

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	• 2 questions will be given from each module,	
module.	out of which 1 question should be answered.	
• Total of 8 Questions,	• Each question can have a maximum of 2	40
each carrying 2 marks	subdivisions.	40
	Each question carries 6 marks.	
(8x2 =16 marks)	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the process of writing, compiling, and executing basic Java programs, including their structure and components, to demonstrate proficiency.	K2
CO2	Utilize object-oriented programming principles in the design and implementation of Java applications.	К3
CO3	Develop and manage Java packages and interfaces, enhancing code modularity and reusability.	К3
CO4	Implement error handling using Java's exception mechanisms and leverage interfaces for modular applications.	К3
CO5	Develop event-driven Java GUI applications with database connectivity using Swing and JDBC.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3		3							3
CO4	3	3	3		3							3
CO5	3	3	3		3							3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Java: The Complete Reference	Herbert Schildt	Tata McGraw Hill	13/e, 2024			
2	Introduction to Java Programming, Comprehensive Version	Y Daniel Liang	Pearson	10/e, 2014			
3	Head First Design Patterns	Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra	O'Reilly Media	1/e, 2004			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Head First Java: A Brain Friendly Guide	Kathy Sierra & Bert Bates	O'Reilly	3/e, 2022			
2	JAVA TM for Programmers	Paul Deitel	PHI	11/e, 2018			
3	Clean Code : A Handbook of Agile Software Craftsmanship	Robert C. Martin	Prentice Hall	1/e, 2008			
4	Programming with Java	E Balagurusamy	McGraw Hill	6/e, 2019			
5	Java For Dummies	Barry A. Burd	Wiley	8/e, 2022			
6	Effective Java	Joshua Bloch	Pearson	3/e, 2018			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/106105191 (Lecture no: 9, 10, 1, 2, 3, 4)					
2	https://nptel.ac.in/courses/106105191 (Lecture no: 1, 7, 8, 11, 12, 13, 14, 15, 16)					
3	https://nptel.ac.in/courses/106105191 (Lecture no: 17, 18, 19, 20, 21, 22, 23, 24, 25, 26)					
4	https://nptel.ac.in/courses/106105191 (Lecture no: 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55)					

PBL Course Elements

L: Lecture	R: Pr	oject (1 Hr.), 2 Facı	ulty Members
(3 Hrs.)	Tutorial	Practical	Presentation
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)
Group discussion	Project Analysis	Data Collection	Evaluation
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted
		Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer	4
	Sessions	
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

DIGITAL ELECTRONICS AND LOGIC DESIGN

(Common to Group A)

Course Code	GAEST305	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To familiarize the basic concepts of Boolean algebra and digital systems.
- 2. To enable the learner to design simple combinational and sequential logic circuits which is essential in understanding organization & design of computer systems.

Module	Syllabus Description	
No.		
1	Introduction to digital Systems: Digital abstraction Number Systems – Binary, Hexadecimal, grouping bits, Base conversion; Binary Arithmetic – Addition and subtraction, Unsigned and Signed numbers; Fixed-Point Number Systems; Floating-Point Number Systems Basic gates- Operation of a Logic circuit; Buffer; Gates - Inverter, AND gate, OR gate, NOR gate, NAND gate, XOR gate, XNOR gate; Digital circuit operation - logic levels, output dc specifications, input dc specifications, noise margins, power supplies; Driving loads - driving other gates, resistive loads and LEDs.	Hours 11
	Verilog (Part 1):- HDL Abstraction; Modern digital design flow - Verilog constructs: data types, the module, Verilog operators.	

	Combinational Logic Design: -			
	Boolean Algebra - Operations, Axioms, Theorems; Combinational logic			
	analysis - Canonical SOP and POS, Minterm and Maxterm equivalence; Logic			
	minimization - Algebraic minimization, K-map minimization, Dont cares, Code			
2	convertors.	11		
	Modeling concurrent functionality in Verilog:-			
	Continuous assignment - Continuous Assignment with logical operators,			
	Continuous assignment with conditional operators, Continuous assignment with			
	delay.			
	MSI Logic and Digital Building Blocks			
	MSI logic - Decoders (One-Hot decoder, 7 segment display decoder),			
3	Encoders, Multiplexers, Demultiplexers; Digital Building Blocks - Arithmetic	8		
3	Circuits - Half adder, Full adder, half subtractor, full subtractor; Comparators.	o		
	Structural design and hierarchy - lower level module instantiation, gate level			
	primitives, user defined primitives, adding delay to primitives.			
	Sequential Logic Design :- Latches and Flip-Flops- SR latch, SR latch with			
	enable, JK flipflop, D flipflop, Register Enabled Flip-Flop, Resettable Flip-			
	Flop. Sequential logic timing considerations; Common circuits based on			
	sequential storage devices - toggle flop clock divider, asynchronous ripple			
	counter, shift register.			
4	Finite State Machines :-	14		
	Finite State Machines - logic synthesis for an FSM, FSM design process and			
	design examples; Synchronous Sequential Circuits - Counters;			
	Verilog (Part 2): -			
	Procedural assignment; Conditional Programming constructs; Test benches;			
	Modeling a D flipflop in Verilog; Modeling an FSM in Verilog.			

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	60
carrying 3 marks.	• Each question can have a maximum of 3 subdivisions.	00
	(4x9 = 36 marks)	
(8x3 =24 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Summarize the basic concept of different number systems and perform conversion and arithmetic operations between different bases.	К2
CO2	Interpret a combinational logic circuit to determine its logic expression, truth table, and timing information and to synthesize a minimal logic circuit through algebraic manipulation or with a Karnaugh map.	K2
CO3	Illustrate the fundamental role of hardware description languages in modern digital design and be able to develop the hardware models for different digital circuits.	К3
CO4	Develop MSI logic circuits using both the classical digital design approach and the modern HDL-based approach.	К3
CO5	Develop common circuits based on sequential storage devices including counter, shift registers and a finite state machine using the classical digital design approach and an HDL-based structural approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3	3							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Logic Circuits & Logic Design with Verilog	Brock J. LaMeres	Springer International Publishing	2/e, 2017			
2	Digital Design and Computer Architecture - RISC-V Edition	Sarah L. Harris, David Harris	Morgan Kaufmann	1/e, 2022			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Digital Design with an Introduction to the Verilog HDL, VHDL, and System Verilog	M Morris Mano, Michael D Ciletti	Pearson	6/e, 2018			
2	Digital Fundamentals	Thomas Floyd	Pearson	11/e, 2015			
3	Fundamentals of Digital Logic with Verilog Design	Stephen Brown, Zvonko Vranesic	McGrawHill	3/e, 2014			
4	Switching and Finite Automata Theory	Zvi Kohavi Niraj K. Jha	Cambridge University Press	3/e, 2010			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	1 https://nptel.ac.in/courses/117105080				
2	https://onlinecourses.nptel.ac.in/noc21_ee39/				
3	https://onlinecourses.nptel.ac.in/noc24_cs61/				

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- 2. Provide fundamental concept of micro and macroeconomics related to engineering industry
- **3.** Deliver the basic concepts of Value Engineering.

Module No.	Syllabus Description	
1	Basic Economics Concepts - Basic economic problems - Production Possibility Curve - Utility - Law of diminishing marginal utility - Law of Demand - Law of supply - Elasticity - measurement of elasticity and its applications - Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion - Economies of Scale - Internal and External Economies - Cobb-Douglas Production Function	6
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition	6

	- Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	
3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market-Demat Account and Trading Account – Stock market Indicators-SENSEX and NIFTY	6
4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost- Benefit Analysis - Capital Budgeting - Process planning	6

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
10	15	12.5	12.5	50

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	Minimum 1 and Maximum	• 2 questions will be given from each module, out	
	2 Questions from each	of which 1 question should be answered.	
	module.	• Each question can have a maximum of 2 sub	50
•	Total of 6 Questions, each	divisions.	50
	carrying 3 marks	Each question carries 8 marks.	
	(6x3 = 18marks)	(4x8 = 32 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

		Bloom's
	Course Outcome	Knowledge
		Level (KL)
	Understand the fundamentals of various economic issues using laws	K2
CO1	and learn the concepts of demand, supply, elasticity and production	
	function.	
	Develop decision making capability by applying concepts relating to	К3
CO2	costs and revenue, and acquire knowledge regarding the functioning of	
	firms in different market situations.	
CO3	Outline the macroeconomic principles of monetary and fiscal systems,	K2
03	national income and stock market.	
	Make use of the possibilities of value analysis and engineering, and	К3
CO4	solve simple business problems using break even analysis, cost benefit	
	analysis and capital budgeting techniques.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

	Text Books									
Sl. No	Title of the Book Name of the Autho		Name of the Publisher	Edition and Year						
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015						
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	PHI	1966						
3	Engineering Economics	R. Paneerselvam	PHI	2012						

Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition						
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011						
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002						
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001						

DATA STRUCTURES LAB

(Common to CS/CA/CM/CD/CR/AI/AM/AD/CB/CN/CC/CU/CI/CG)

Course Code	PCCSL307	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GYEST204	Course Type	Lab

Course Objectives:

1. To give practical experience for learners on implementing different linear and non linear data structures, and algorithms for searching and sorting.

Expt.	Experiments
No.	<i>Experiments</i>
1	Find the sum of two sparse polynomials using arrays
2	Find the transpose of a sparse matrix and sum of two sparse matrices.
3	Convert infix expression to postfix (or prefix) and then evaluate using stack,
4	Implement Queue, DEQUEUE, and Circular Queue using arrays.
5	Implement backward and forward navigation of visited web pages in a web browser (i.e.
3	back and forward buttons) using doubly linked list operations.
6	Implement addition and multiplication of polynomials using singly linked lists.
7	Create a binary tree for a given simple arithmetic expression and find the prefix / postfix
,	equivalent.
8	Implement a dictionary of word-meaning pairs using binary search trees.
9	Find the shortest distance of every cell from a landmine inside a maze.
	We have three containers whose sizes are 10 litres, 7 litres, and 4 litres, respectively. The
	7-litre and 4-litre containers start out full of water, but the 10-litre container is initially
10	empty. We are allowed one type of operation: pouring the contents of one container into
10	another, stopping only when the source container is empty or the destination container is
	full. We want to know if there is a sequence of pourings that leaves exactly 2 litres in the 7
	or 4-litre container. Model this as a graph problem and solve.

Implement the find and replace feature in a text editor.
Given an array of sorted items, implement an efficient algorithm to search for specific
item in the array.
Implement Bubble sort, Insertion Sort, Radix sort, Quick Sort, and Merge Sort and
compare the number of steps involved.
The General post office wishes to give preferential treatment to its customers. They have
identified the customer categories as Defence personnel, Differently abled, Senior citizen,
Ordinary. The customers are to be given preference in the decreasing order - Differently
abled, Senior citizen, Defence personnel, Normal person. Generate the possible sequence
of completion.
Implement a spell checker using a hash table to store a dictionary of words for fast
lookup. Implement functions to check if a word is valid and to suggest corrections
for misspelled words.
Simulation of a basic memory allocator and garbage collector using doubly linked
list
The CSE dept is organizing a tech fest with so many exciting events. By participating
in an event, you can claim for activity points as stipulated by KTU. Each event i gives
you A[i] activity points where A is an array. If you are not allowed to participate in more
than k events, what's the max number of points that you can earn?
Merge K sorted lists into a single sorted list using a heap. Use a min-heap to keep track of
the smallest element from each list. Repeatedly extract the smallest element and insert the
next element from the corresponding list into the heap until all lists are merged.

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with valid				
Preparatory	Execution of work/	inference/	Viva	Dogoud	Total	
work/Design/	troubleshooting/	Quality of	voce	Record	Total	
Algorithm	Programming	Output				
10	15	10	10	5	50	

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Model a real world problem using suitable data structure and implement the solution.	К3
CO2	Compare efficiency of different data structures in terms of time and space complexity.	К4
CO3	Evaluate the time complexities of various searching and sorting algorithms.	К5
CO4	Differentiate static and dynamic data structures in terms of their advantages and application.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3				3				3
CO2	3	3	3	3				3				3
CO3	3	3	3	3				3				3
CO4	3	3	3	3				3				3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Fundamentals of Data Structures in C	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,	Universities Press,	2/e, 2007
2	Introduction to Algorithms	Thomas H Cormen, Charles Leisesrson, Ronald L Rivest, Clifford Stein	РНІ	3/e, 2009

		Reference Books		
SI. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year
1	Classic Data Structures	Samanta D.	Prentice Hall India.	2/e, 2018
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication.	1/e, 2003
3	Introduction to Data Structures with Applications	Tremblay J. P., P. G. Sorenson	Tata McGraw Hill.	2/e, 2017
4	Theory and Problems of Data Structures	Lipschutz S.	Schaum's Series	2/e, 2014

	Video Links (NPTEL, SWAYAM)					
Module No. Link ID						
1	1 https://nptel.ac.in/courses/106102064					
2	https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

• Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.

• Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 3

PYTHON AND STATISTICAL MODELING LAB

(Common to AD/CD/CR)

Course Code	PCCDL308	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

1. The course aims to familiarize students with basic Python concepts and data structures, model graphical representation of data, measures of central tendency and measures of dispersion. The course will also introduce students to use python in solving problems based on statistical distributions, regression analysis and correlation tests

Expt. No.	Experiments
1	Write a program to find the largest of three numbers.
2	Write a program to print the multiplication table of a number n.
3	Write a program to find Surface area and volume of a cylinder using function.
4	Write a program to replace a word by another word in a sentence.
5	Write a program to confirm the validity of an email id by verifying its format.
6	Write a program to remove every occurrence of a number from a list.
7	Write a program to add two matrices.
8	Write a program to read a tuple of numbers and print even tuple and odd tuple.
9	Create a dictionary with a set of book title and corresponding stock. Write a program to update the stock and to add or delete books.
10	A set of numbers are stored in a file. Write a program to print the prime numbers among them.
11	Write a program to count the number of words, sentences, upper case letters, lowercase letters and special symbols in a text stored in file.

12	Plot a graph	y = f(x)					
13	Africa; 10.4 d Soviet Union	the various contin for Asia; 1.9 for E a. Draw a bar chart	urope; 9.4 for No representing the	orth America; 3	•	*	
	Draw the his	stogram of the fo	ollowing data:				_
14	Heigh	t of student(m)	135 - 140	140 - 145	145-150	150-155	
	No. of	students	4	12	16	8	
		ins population art t states. Compute		`	•		le per year)
	St	tate	Population	Murde	Murder		
	A	labama	4,779,736	5.7			
	A	laska	710231	5.6			
15	A	rizona	6,392,017	4.7			
		rkansas	2,915,918	5.6			
		alifornia	37,253,956	4.4			
		olorado	5,029,196	2.8			
		onnecticut	3,574,097	2.4			
		elaware	89,924	5.8	1 0 11		
16		e S.D. and coeff		, ,			0.00
16	Class:	0-10 10-2	20 20-30 3	30-40 40-5			0-80
	Frequency: If X is binor	5 10 mially distributed		30 nd a probabili		10 5	5 at each
17		at is the probabil		ια α ρισσασιιι	ly of success	s equal to 0.2	at cacii
	a) exactly 4 s	successes b) at leas	st one success				
18							
	18	If the random v	ariable X follow	ws a Poisson o	listribution	with mean 3.	4, find

	19	the high summa level of Fer Ma	hest ed rized i f signif male	ucation leve	people were surveyel they obtained. Thing table. Are gendernool Bachelors	e data that resul	ted from the su	rvey is
	19	Ma To				Masters	Ph.D	Total
		Ma To		60	54			
		То	ale		34	46	41	201
				40	44	53	57	194
			tal	100	98	99	98	395
		Calcula	ite the	correlation of	coefficient of the tv	vo variables show	wn in the table	below.
		Pers on	Ha nd	Heig ht				
	20	A	17	150				
	20	В	15	154				
		С	19	169				
		D	17	172				
		Е	21	175				
	21	trucks a	are driv	ven 1000 mithe mean M	light trucks is rand iles and the fuel m IPG is 22 with a S Conduct a t- test of	ileage (MPG) of D equal to 3. T	each truck is the previous m	recorded. It
	22	scale la employ provide Manage and alte	ast year rees from evide ement ernativ	or. This year om the Hurnce that emissing is significant.	ting for all employ or you get ratings man Research Man aployee productivit of this higher than in a for this problem.	from a represe nagement. Do the y in the departr the company as	ntative sample ne data from t ment of Huma s a whole? Wr	e of fifteen this sample n Resource ite the null
	23	statistic satisfac	cal ana	lysis softwa	quation for predicte. If one knows the stheir systolic block?	at a subject in the	e future has a s	core on job
	i				Job Satisfaction	n Systolic BP		

						34	124		
						23	128		
						19	157		
						43	133		
						56	116		
						47	125		
						32	147		
						16	167		
						55	110		
						25	156		
							130		
	18	P(X=6	om san	nple of :	395 people	e were surveye	n distribution	son was asked	to report
		summa	rized i	n the folicance?	llowing ta	ble. Are gende	e data that resul	n level depende	ent at 5%
	19				n School	Bachelors	Masters	Ph.D	Total
		Fe	male	60		54	46	41	201
19		M	ale	40		44	53	57	194
		To	otal	100		98	99	98	395
		Calcula	ate the	correlat	ion coeffic	cient of the two	o variables sho	wn in the table	below.
		Pers on	Ha nd	Heig ht					
		A	17	150					
	20	В	15	154					
		С	19	169					
		D	17	172					
		Е	21	175					

	21		is found that the mean MPG is 22 with a SD equal to 3. The previous model of the light truck got 20 MPG. Conduct a t- test of the null hypothesis at $p = 0.05$.								
	22	The mean productivity rat scale last year. This year employees from the Hun provide evidence that em Management is significan and alternative hypotheses null hypothesis stated above.	r you get ratings from the plane of the plane of the plane of the plane of the productivity is the problem. Us	om a representative gement. Do the data in the department of e company as a wh	e sample of fifteen a from this sample of Human Resource ole? Write the null						
		Obtain the regression equal analysis software. If one k 15, what is their systolic b estimate?	nows that a subject in	the future has a sco	ore on job satisfaction o						
			Job Satisfaction	Systolic BP							
		34	124	-							
	23		23	128	-						
			19	157	-						
			43	133	-						
			56	116	-						
			47	125	-						
			32	147							
			16	167	-						
			55	110	-						
			25	156							
		170.1	7 0 11	41 . 19 . 1 . 1 . 1	2.4.7						
	18	If the random variable λ	X tollows a Poisson	distribution with r	nean 3.4, find						
20		P(X=6).									

		level o	f signif	icance?				
				High Sch	ool Bachelors	Masters	Ph.D	Total
		Fe	male	60	54	46	41	201
		M	ale	40	44	53	57	194
		To	tal	100	98	99	98	395
		Calcula	ate the	correlation co	pefficient of the two	variables show	wn in the table	below.
		Pers on	Ha nd	Heig ht				
	20	A	17	150				
		С	15 19	154				
		D	17	172				
		Е	21	175				
	21	trucks is foun	are driv	ven 1000 mil the mean MI	ght trucks is rando es and the fuel mile PG is 22 with a SI anduct a t- test of the	eage (MPG) of pequal to 3. T	each truck is the previous m	recorded. It nodel of the
	22	scale 1 employ provide Manag and alte	ast year rees from e evide ement ernative	or. This year om the Hum nee that empire significant	ing for all employed you get ratings for an Research Mana ployee productivity thy higher than in the for this problem. Use	from a represe agement. Do the in the department as the company as	ntative sample ne data from ment of Huma s a whole? Wi	e of fifteen this sample in Resource rite the null
		analysi	s softwat is the	are. If one ki	tion for predicting s nows that a subject ood pressure predic	in the future ha	as a score on jo	b satisfaction o
	23				Job Satisfaction	Systolic BP	•	
					34	124		
					23	128		

						19	157						
						43	133						
						56	116						
						47	125						
						32	147						
						16	167						
						55	110						
						25	156						
	18	If the r		n varial	ole X foll	lows a Poisso	n distribution	with mean 3.4	4, find				
		the hig summa	hest e	ducation	level the	ey obtained. T	he data that re		from the survey is el dependent at 5%				
	19		High Scho		n School	Bachelors	Masters	Ph.D	Total				
		Fe	male	60		54	46	41	201				
		Ma	ale	40		44	53	57	194				
21		То	tal	100		98	99	98	395				
		Calcula	ite the	correlat	ion coeffi	cient of the tw	o variables sho	wn in the table	below.				
		Pers	Ha	Heig									
		on	nd	ht									
	20	A	17	150									
		В	15	154									
		С	19	169									
		D	17	172									
		Е	21	175									
	21	trucks	are dri	ven 100	0 miles ar	nd the fuel mil	eage (MPG) of	off the assemble f each truck is a The previous m	recorded. It				

		light truck got	20 MPG. Condu	ct a t- test of the	e null hypothesis	s at $p = 0.05$.	
	22	scale last yea employees fro provide evider Management i and alternative	ductivity rating for. This year you om the Human Fonce that employed is significantly his chypotheses for the stated above.	get ratings fr Research Manage be productivity igher than in th	om a representagement. Do the in the departmentage company as a	ative sample of data from this ent of Human I whole? Write	of fifteen s sample Resource the null
		analysis softw	ression equation are. If one knows ir systolic blood	that a subject in	n the future has	a score on job s	satisfactio
			Jo	b Satisfaction	Systolic BP		
				34	124		
				23	128		
	23			19	157		
				43	133		
				56	116		
				47	125		
				32	147		
				16	167		
				55	110		
				25	156		
	18	If the random P(X=6).	n variable X foll	ows a Poisson	distribution w	ith mean 3.4,	find
22	19	the highest ed	nple of 395 peop lucation level the n the following to icance?	y obtained. Th	e data that resu	lted from the s	survey is
			High School	Bachelors	Masters	Ph.D	Total

		Fe	male	60	54	46	41	201
		Ma	ale	40	44	53	57	194
		То	tal	100	98	99	98	395
		Calcula	ate the	correlation	coefficient of the two	o variables show	n in the tabl	e below.
	20	Pers on	Ha nd	Heig ht				
		A	17	150				
		В	15	154				
		С	19	169				
		D	17	172				
		Е	21	175				
	21	trucks a is foun light trucks. The me scale la employ provide Manag	are dri d that uck go ean pro ast yea /ees fr e evide ement	the mean t 20 MPG. Oductivity of the the the the the the the that e is signific	o light trucks is randomiles and the fuel miles and the fuel miles and the fuel miles are selected as a selected at the fuel miles are selected at the fuel miles are selected at the fuel miles are selected at the fuel miles for this problem. It is a selected and the fuel miles and the fuel miles are selected at the fuel miles are selected	eage (MPG) of D equal to 3. The null hypothes res at a company from a representagement. Do they in the department the company as	each truck is ne previous rais at p = 0.05 was 3.8 on atative samp e data from nent of Hum a whole? W	a five- point le of fifteen this sample an Resource
		Obtain analysi	the reg s softw at is th	vare. If one	uation for predicting knows that a subject blood pressure prediction	in the future has cted to be? Wha	s a score on j	ob satisfaction of
	23				34	124		
					23	128		
					19	157		
					43	133		
							ı	

						47	125					
						32	147					
						16	167					
						55	110					
						25	156					
	18	If the random variable X follows a Poisson distribution with mean 3.4, find P(X=6).										
		the hig summa	hest e rized i	ducation	level the	le were survey ey obtained. The able. Are gend	he data that re	esulted from t	he survey is			
	19			Higl	n School	Bachelors	Masters	Ph.D	Total			
		Female		60		54	46	41	201			
		Ma	ale	40		44	53	57	194			
		То	tal	100		98	99	98	395			
		Calculate the correlation coefficient of the two variables shown in the table below.										
23		Pers	Ha nd	Heig ht								
		A	17	150								
	20	В	15	154								
		C	19	169								
		D	17	172								
		E	21	175								
					16 light	trucks is rando	umly selected (off the assemb	oly line. The			
	21	Suppose a sample of 16 light trucks is randomly selected off the assembly line trucks are driven 1000 miles and the fuel mileage (MPG) of each truck is reconsisted in the mean MPG is 22 with a SD equal to 3. The previous model light truck got 20 MPG. Conduct a t- test of the null hypothesis at $p = 0.05$.										
	22	The mean productivity rating for all employees at a company was 3.8 on a five-point scale last year. This year you get ratings from a representative sample of fifteen employees from the Human Research Management. Do the data from this sample provide evidence that employee productivity in the department of Human Resource Management is significantly higher than in the company as a whole? Write the null										

	and alternative hypothes null hypothesis stated ab		se statistical analys	sis software to test the
	Obtain the regression eq analysis software. If one 15, what is their systolic estimate?	knows that a subject in	n the future has a s	score on job satisfaction of
		Job Satisfaction	Systolic BP	
		34	124	
		23	128	
23		19	157	
23		43	133	
		56	116	
		47	125	
		32	147	
		16	167	
		55	110	
		25	156	

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Experiment with concepts of iteration, function, string and list	КЗ
CO2	Identify the importance of tuples, dictionary traversal, dictionary methods, files and operations	К3
CO3	Model graphical representation of data, measures of central tendency and measures of dispersion	К3
CO4	Solve problems based on Binomial distribution, Poisson distribution, sampling and regression analysis	К3
CO5	Make use of various correlation tests and utilize statistical analysis software	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	٧	٧	٧					٧				٧
CO2	٧	٧	٧	٧				٧				٧
CO3	٧	٧	٧	٧				٧				٧
CO4	٧	٧	٧	٧				٧				٧
CO5	٧	٧	٧	٧	٧			٧				٧

^{1:} Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Probability and Statistics for Engineering and the Sciences	Jay L Devore	Cengage Learning India	9/e, 2020							

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

• Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.

• Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted