SE	SECOND SEMESTER (January-June): Group B													
SI. No:		Course Code	e Type	urse gory	Course Title		Credit Structure			SS	Total Marks		Credit	Week
	Slot		Cours	Cou Cate	(Course Name)	L	T P R		R		CI A	ESE	SE SE	
1	А	GYMAT201	BSC	GC	Mathematics for Electrical Science-2	3	0	0	0	4.5	40	60	3	3
2	B S2	GBPHT121	BSC	GC	Physics for Electrical Science	3	0	2	0	5.5	40	60	4	5
3	C	G <mark>B</mark> EST213	ESC	GC	Engineering Mechanics (EEE, CP, BR, RA & RU)	3	0	0	0	4.5	40	60	3	3
4	D	GXEST204	ESC	GC	Programming in C		0	2	0	5.5	40	60	4	5
5	E	PCEET205	PC	PC	Measurements and Instrumentation (Programme Core-1)	3	1	0	0	5	40	60	4	4
6	F	UCEST206	ESC	UC	Engineering Entrepreneurship & IPR	3	0	0	0	4.5	60	40	3	3
7	I** S2	UCPWT127	PW	UC	Health and Wellness		0	1	0	0	50	0	1	2/3
8	L	G <mark>X</mark> ESL208	ESC	GC	T Workshop (0	2	0	1	50	50*	1	2
	S1/ S2	UCSEM129	SEC	UC	Skill Enhancement Course: Digital 101(NASSCOM)			1						
Tota	ıl									34			24	27/ 28

B.Tech 2024 – S1/S2

SEMESTER 2 GROUP B

APJ Abdul Kalam Technological University 2

SEMESTER S2

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE - 2

(Common to Group B & C)

Course Code	GYMAT201	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in single variable calculus.	Course Type	Theory

Course Objectives:

1. To provide a comprehensive understanding of partial derivatives, multiple integrals, and the differentiation and integration of vector-valued functions, emphasizing their applications in engineering contexts.

	SYL	LAB	SUS
--	-----	-----	-----

Module No.	Syllabus Description	Contact Hours
1	Limits and continuity, Partial derivatives, Partial derivatives of functions with two variables, Partial derivatives viewed as rate of change and slopes, Partial derivatives of functions with more than two variables, Higher order partial derivatives, Local Linear approximations, Chain rule, Implicit differentiation, Maxima and minima of functions of two variables - relative maxima and minima (Text 1: Relevant topics from sections 13.2, 13.3, 13.4, 13.5, 13.8)	9

Double integrals, Reversing the order of integration in double integrals, change of coordinates in double integrals (Cartesian to polar), Evaluating areas using Double integrals, Finding volumes using double integration, Triple integrals, Volume calculated as triple integral, Triple integral in Cartesian and cylindrical coordinates. (Text 1: Relevant topics from section 14.1, 14.2, 14.3, 14.5, 14.6)	9
 Vector valued function of single variable - derivative of vector valued function, Concept of scalar and vector fields, Gradient and its properties, Directional derivative, Divergent and curl, Line integrals of vector fields, Work done as line integral, Conservative vector field, independence of path, Potential function (results without proof). (Text 1: Relevant topics from section 12.1, 12.2, 13.6, 15.1, 15.2, 15.3) 	9
Green's theorem (for simply connected domains, without proof) and applications to evaluating line integrals, finding areas using Greens theorem, Surface integrals over surfaces of the form $z = g(x, y)$, Flux integrals over surfaces of the form $z = g(x, y)$, Divergence theorem (without proof), Using Divergence theorem to find flux, Stokes theorem (without proof) (Text 1: Relevant topics from section 15.4, 15.5, 15.6, 15.7, 15.8)	9
	Double integrals, Reversing the order of integration in double integrals, change of coordinates in double integrals (Cartesian to polar), Evaluating areas using Double integrals, Finding volumes using double integration, Triple integrals, Volume calculated as triple integral, Triple integral in Cartesian and cylindrical coordinates. (Text 1: Relevant topics from section 14.1, 14.2, 14.3, 14.5, 14.6) Vector valued function of single variable - derivative of vector valued function, Concept of scalar and vector fields, Gradient and its properties, Directional derivative, Divergent and curl, Line integrals of vector fields, Work done as line integral, Conservative vector field, independence of path, Potential function (results without proof). (Text 1: Relevant topics from section 12.1, 12.2, 13.6, 15.1, 15.2, 15.3) Green's theorem (for simply connected domains, without proof) and applications to evaluating line integrals, finding areas using Greens theorem, Surface integrals over surfaces of the form $z = g(x, y)$, Flux integrals over surfaces of the form $z = g(x, y)$, Divergence theorem (without proof), Using Divergence theorem to find flux, Stokes theorem (without proof) (Text 1: Relevant topics from section 15.4, 15.5, 15.6, 15.7, 15.8)

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Compute the partial and total derivatives and maxima and minima of multivariable functions and to apply in engineering problems.	K3
CO2	Understand theoretical idea of multiple integrals and to apply them to find areas and volumes of geometrical shapes.	К3
CO3	Compute the derivatives and line integrals of vector functions and to learn their applications.	K3
CO4	Apply the concepts of surface and volume integrals and to learn their inter-relations and applications.	К3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Calculus	H. Anton, I. Biven, S.Davis	Wiley	12 th edition, 2024			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki	Pearson	15 th edition, 2023			
2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017			
3	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016			
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021			
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://nptel.ac.in/courses/111107108				
2	https://nptel.ac.in/courses/111107108				
3	https://nptel.ac.in/courses/111107108				
4	https://nptel.ac.in/courses/111107108				

SEMESTER S1/S2

PHYSICS FOR ELECTRICAL SCIENCE

Course Code	GBPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

(Common to Group B)

Course Objectives:

- **1.** To provide students with a solid background in the fundamentals of Physics and to impart this knowledge in Electrical Science disciplines.
- **2.** To develop scientific attitudes and enable students to correlate Physics concepts with their core programs.
- **3.** To equip students with practical knowledge that complements their theoretical studies and develop their ability to create practical applications and solutions in engineering based on their understanding of Physics.

Module No.	Syllabus Description	Contact Hours	
	Semiconductor Physics		
	Intrinsic semiconductor, Derivation of density of electrons in conduction		
	band and density of holes in valence band, Intrinsic carrier concentration,		
1	Variation of Intrinsic carrier concentration with temperature, Extrinsic		
	semiconductor (qualitative)		
	Formation of p-n junction, Fermi level in semiconductors-intrinsic and		
	extrinsic, Energy band diagram of p-n junction - Qualitative description of		
	charge flow across a p-n junction - Forward and reverse biased p-n		
	junctions, Diode equation (Derivation), V-I Characteristics of p-n junction		
	Semiconductor Devices		
2	Semiconductor devices - Rectifiers- Full wave and Half wave, Zener	9	

SYLLABUS

	B.Tech	<u>: 2024 –SI/S</u>
	diode - V-I characteristics - Zener breakdown and Avalanche breakdown,	
	Tunnel diode - V-I characteristics, Applications of Zener and Tunnel	
	diodes.	
	Photonic devices (qualitative) - Photo detectors (Junction and PIN	
	photodiodes), Applications, Solar cells- V-I Characteristics, Efficiency,	
	Stringing of Solar cells to solar panel, Light Emitting Diode, Applications	
	of LED	
	Superconductivity & Dielectrics	
	Super conductivity, Transition temperature, Critical field, Meissner	
	effect, Type I and Type II Super conductors, Applications of	
	superconductors.	
3	Dielectric constant, Polarization, Permittivity- relative permittivity,	9
	Relation between polarization and dielectric constant, Types of	
	Polarization, Internal fields in liquids and solids, Clausius Mossotti	
	Relation, Dielectric loss(qualitative), Dielectric breakdown (qualitative)	
	Laser & Fiber Optics	
	Optical processes - Absorption, Spontaneous emission and stimulated	
	emission, Properties of laser, Principle of laser - conditions for sustained	
	lasing - Population inversion, Pumping, Metastable states, Basic	
	components of laser - Active medium- Optical resonant cavity,	0
4	Construction and working of Ruby laser, Semiconductor Laser	9
	(Qualitative), Applications of laser.	
	Optical fiber-Principle of propagation of light, Types of fibers-Step index	
	and Graded index fibers, Numerical aperture –Derivation, Applications of	
	optical fibers - Fiber optic communication system (block diagram)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the fundamentals of Semiconductor Physics.	К2
CO2	Describe the behaviour of semiconductor materials in semiconductor devices.	K2
CO3	Explain Superconductivity and basic theory of dielectrics	К2
CO4	Apply the comprehended knowledge about laser and fiber optics in various engineering applications	К3
CO5	Apply basic knowledge of principles and theories in physics to conduct experiments.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3											3
CO4	3	2										3
CO5	3	2			3				2			3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6 th Edition, 2003				
2	Engineering Physics	H K Malik and A K Singh	McGraw Hill	2 nd Edition, 2017				
3	A Textbook of Engineering Physics	MN Avadhanulu, P G Kshirsagar, TVS Arun murthy	S. Chand	11 th Edition, 2018				

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Semiconductor Devices Fundamentals	Robert F Pierret	Pearson Education	1995		
2	Advanced Semiconductor Fundamental	Robert F Pierret	Pearson Education	2 nd Edition, 2002		
3	Solid State Electronic Devices	Ben G Streetman and Sanjay Kumar Banerjee	Pearson Education 6/e	2010		
4	Solid State Physics	S.O. Pillai	New age international publishers	10 th Edition, 2022		
5	Introduction to Solid State Physics	Charles Kittel	Wiley India Edition	2019		
6	Advanced Engineering Physics	Premlet B	Phasor Books	10 th Edition ,2017		
7	A Text Book of Engineering Physics	I. Dominic and. A. Nahari,	Owl Books Publishers	Revised Edition, 2016		

Video Links (NPTEL, SWAYAM etc)					
Module No.	Link ID				
1	https://nptel.ac.in/courses/108106181				
2	https://nptel.ac.in/courses/108108112				
3	https://nptel.ac.in/courses/115103108				
4	https://nptel.ac.in/courses/115102124				

1. <u>Continuous Assessment (10 Marks)</u>

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test • understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of • the theoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

Procedure and Execution: Adherence to correct procedures, accurate execution of • experiments, and following safety protocols.

- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

iv. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

2. Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List

(Minimum 10 Experiments)

Experiment No.	Experiment				
1	Diode characteristics				
2	Zener diode- V-I characteristics				
3	Tunnel diode – V-I characteristics				
4	Half wave rectifier				
5	Full wave rectifier				
6	Hall effect in semiconductors				
7	Determination of band gap energy of a semiconductor				
8	Characteristics of LED				
9	Solar Cell- V-I and Intensity Characteristics				
10	Laser – Determination of wavelength using diffraction grating				
11	Laser- To measure the wavelength using a millimetre scale as a grating				
12	Compare the variation of current with potential difference, for a metal, filament bulb and semiconductor diode.				
13	Determination of dielectric constant				
14	CRO -Measurement of frequency and amplitude of wave forms				
15	Photo diode- V-I Characteristics				
16	Numerical aperture of optical fiber				

SEMESTER S2

PROGRAMMING IN C

(Common to Group A & B)

Course Code	GXEST204	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To prepare learner to write versatile C programs for solving computational problems that they come across in their professional life.
- **2.** To equip the learner to write efficient C programs using suitable language constructs to solve real world computational problems.

Module No.	Syllabus Description					
	C Fundamentals - Character Set, Constants, Identifiers, Keywords, Basic					
	Data types, Variables, Operators and its precedence, Bit-wise operators,					
	Expressions; Statements - Input and Output statements; Structure of a C					
1	program; Simple programs.					
	Control Statements - if, if-else, nested if, switch, while, do-while, for, break & continue, nested loops.	9				
	Arrays - Single dimensional arrays, Defining an array, Array initialization,					
2	Accessing array elements; Enumerated data type; Type Definition; Two-					
Z	dimensional arrays - Defining a two-dimensional array; Programs for	9				
	matrix processing; Programs for sequential search; Bubble sort;					
	Strings - Declaring a string variable, Reading and displaying strings, String					

SYLLABUS

	Dirton	
	related library functions – Programs for string matching.	
3	 Functions - Function definition, Function call, Function prototype, Parameter passing; Recursion; Passing array to function; Macros - Defining and calling macros; Command line Arguments. Structures - Defining a Structure variable, Accessing members, Array of structures, Passing structure to function; Union. Storage Class - Storage Classes associated with variables: automatic, static, external and register. 	9
4	 Pointers - Declaration, Operations on pointers, Passing pointer to a function, Accessing array elements using pointers, Processing strings using pointers, Pointer to pointer, Array of pointers, Pointer to function, Pointer to structure, Dynamic Memory Allocation. Files- Different types of files in C, Opening & Closing a file, Writing to and Reading from a file, Processing files, Library functions related to file – fseek(), ftell(), fread(), fwrite(). 	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Infer a computational problem and develop C programs from them using basic constructs of C language including the control statements.	K2
CO2	Develop C programs using arrays, matrices, and strings.	K3
CO3	Utilize functions to find solution to the computational problems by dividing it into a number of modules and abstract data types.	К3
CO4	Develop C programs using pointers for dynamic data handling.	K3
CO5	Use files in C to permanently store and manipulate data.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	-	1	-	1	-	-	-	1
CO2	3	3	3	3	-	1	-	1	-	-	-	1
CO3	3	3	3	3	-	1	-	1	-	-	-	1
CO4	3	3	3	3	-	1	-	1	-	-	-	1
CO5	3	3	3	3	-	1	-	1	-	-	-	1

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Programming with C	Byron S Gottfried	Mc Graw Hill Education	4 th Edition July 2018					
2	The C Programming Language	Brian W. Kernighan and Dennis Ritchie	Pearson	2 nd Edition January 2015					
3	C The Complete Reference	Herbert Schildt	Mc Graw Hill Education	4 th Edition July 2017					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Programming In Ansi C	E Balagurusamy	Mc Graw Hill	8 th Edition March 2019				
2	Programming in C	Kamthane	Pearson	3rd Edition January 2015				
3	Let us C	Yashavant Kanetkar	Bpb publishers	19th Edition December 2022				
4	Computer Programming in C	V Rajaraman	PHI Learning Private Limited	2nd July 2019				

SEMESTER 2

MEASUREMENTS AND INSTRUMENTATION

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Course Code	PCEET205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-1-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	PC -Theory

Course Objectives:

- 1. To introduce the concepts of electrical measurement systems and instrumentation.
- 2. To discuss the principles of operation and construction of basic instruments for measuring circuit parameters, magnetic quantities, and passive parameters using bridge circuits, sensors, and transducers.
- **3.** To introduce modern digital instrumentation systems.

Module	Syllabus Description							
No.								
1	 Functional Elements of Measurements Systems- Block Schematic and brief operation of building blocks Standards of Measurements- Static characteristics (accuracy, precision, linearity, resolution), Need for calibration, Types of errors Instruments- Classification; Operating Forces and Torques: deflecting, controlling and damping torques- Gravity and spring control; air, fluid friction and eddy current damping. Measurement of Voltage and Current- Moving Coil and Moving Iron types., Range Extension – shunts and multipliers (Include simple problems of range 							
2	Magnetic Measurement-Flux Meter,Determination of BH Curve -HysteresisLoop (Method of Reversal).Measurement of Resistance,	11						

SYLLABUS

	D.1001202	24 01/02
	Wheatstone's Bridge, Kelvin's Double Bridge (Simple Problems), Loss of	
	Charge Method, Measurement of Earth Resistance.	
	Measurement of Inductance- Maxwell's Inductance Bridge, Measurement of	
	Capacitance - Schering's Bridge, Measurement of Frequency- Wien Bridge	
	(Include Simple Problems)	
	Q-meter, LCR Meters (Description only)	
	Measurement of Power and Energy: Measurement of Power using Dynamometer	
	type wattmeter, Three phase Power Measurement using Two Wattmeter Method	
	(Include Phasor Diagrams and Expressions, Include simple problems of two	
	wattmeter method)	
	Measurement of Energy Using Induction type Energy Meter, Two Element	
3	Energy Meter	11
	Instrument Transformers-CT and PT- Principle of Operation- Range Extension	
	Basic Principles of Electronic Multimeter, Digital Voltmeter Digital Energy Meter, TOD Meter, Smart Metering, Bidirectional Meters	
	(Description Only)	
	Block Schematic of electronic instrumentation system - role of sensors and	
	transducers	
	Classification of Temperature transducers- Principle of operation of	
	Thermistors and RTD	
	Classification of flow transducers- Principle of operation of	
4	Electromagnetic and ultrasonic types	11
	Strain gauge: Basic working principle, types and applications; Measurement of	11
	angular speed and luminous intensity	
	Principles of Digital Data Acquisition systems - Role of Signal conditioning	
	systems (Basic Principles only)- Phasor Measurement Unit (Block Schematic	
	and Description Only)	
	CRO, DSO and Harmonic Analyzers: Block Diagram, Basic Principles and applications only Virtual Instrumentation Systems: Block schematic and Description only IOT	
	and Data analytics for Industrial Process- Case study on Smart Grid	
	and Data analytics for industrial recess- Case study on billart Ond	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Classify various parameters and errors associated with measuring instruments.	K2
CO2	Apply suitable methods for the measurement of current, voltage, power and energy.	К3
CO3	Understand suitable methods for the measurement of magnetic quantities, resistance, inductance and capacitance.	K2
CO4	Describe the working principle, selection criteria and applications of various sensors and transducers in relation to measurements systems.	K2
CO5	Explain the operation of digital measurement systems.	K2
CO6	Discuss the applications of modern instrumentation schemes for industrial process	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	2
CO2	3	3	-	-	-	2	-	-	-	-	-	2
CO3	3	3	-	-	-	-	-	-	-	-	-	2
CO4	3	2	-	-	2	-	-	-	-	-	-	2
CO5	3	2	-	-	2	-	-	-	-	-	-	2
CO6	3	2	3	-	3	2	-	-	-	-	-	2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	A course in Electrical and Electronic Measurements & Instrumentation	K. Sawhney	Dhanpat Rai & Co.	2023		
2	A course in Electrical & Electronic Measurement & Instrumentation	J. B. Gupta	S K Kataria & Sons	14 th Ed., 2014		
3	Electrical Measurements & Measuring Instruments	Golding E.W and Widdis	Wheeler Pub.	3 rd Ed.,2011		
4	Electronic Instrumentation	H. S. Kalsi	McGraw Hill, New Delhi	4 th Ed., 2019		
5	Principles of Electrical Measurement	S Tumanski	Taylor & Francis.	2006		
6	Electronic Instrumentation and Measurements	David A Bel	Oxford	3 rd Ed,, 2013		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Modern Electronic Instrumentation and Measurement Techniques	Albert D. Helfrick, Cooper William D	Prentice Hall of India	2016			
2	Basic Electrical Measurements	Stout M.B	Prentice Hall	2012			
3	Electronic Measurements & Instrumentation	Oliver & Cage	McGraw Hill	2017			
4	Doebelin's Measurements Systems	E.O Doebelin and D.N Manik	McGraw Hill Education (India) Pvt. Ltd.	7 th Ed., 2019			
5	Electrical and Electronics Measurements and Instrumentation	P.Purkait, B.Biswas, S.Das and C. Koley	McGraw Hill Education (India) Pvt. Ltd.,	2013			

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
	https://archive.nptel.ac.in/courses/108/105/108105153/					
1	https://archive.nptel.ac.in/courses/108/108/108108147/					
2	https://archive.nptel.ac.in/courses/108/105/108105153/					
3	https://archive.nptel.ac.in/courses/108/105/108105153/					
	https://archive.nptel.ac.in/courses/108/108/108108147/					
4	https://archive.nptel.ac.in/courses/106/105/106105166/					

SEMESTER S2

ENGINEERING ENTREPRENEURSHIP AND IPR (Common to all Branches)

Course Code	UCEST206	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	2:1:0:0	ESE Marks	40
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop a framework for identifying, curating and validating engineering-based business ideas.
- 2. Learn essential tools for understanding product-market fit and customer needs.
- 3. Create a comprehensive business plan for a new venture.
- **4.** Gain foundational knowledge of Intellectual Property Rights (IPR) and their importance for startups.
- 5. Develop skills for prototyping, stakeholder engagement, and team collaboration.

Module No.	Syllabus Description	Contact Hours
	Introduction to Ideation, Innovation & Entrepreneurship	
	• What is Ideation?	
	Understanding Innovation	
1	• Frameworks for Innovation	0
I	• The Entrepreneurial Mindset	7
	• Starting a Business, types formation statutory compliances.	
	Resources for Aspiring Entrepreneurs	

SYLLABUS

	Introduction to Intellectual Property Rights (IPR)				
	• Types of IPR: Patents, trademarks, copyrights, trade secrets				
	• Strategies for protecting intellectual property based on the type of				
	innovation				
	• Role of IPR in securing funding and competitive advantage				
	Importance of building a strong team				
	• Identifying roles				
	• Skill sets				
	• Team dynamics				
	Identifying Pain Points and problem statement				
	Idea Generation Techniques				
	• Developing and Refining Ideas				
	• Develop strategies for bringing your innovation to life				
	Problem and solution canvas preparation				
	Orientation and canvas introduction				
	Customer needs assessment				
	Market segmentation				
	Value proposition				
	• Competitive analysis				
	• Market entry strategy				
	Market validation				
	Regulatory and legal considerations				
2	Customer profiling				
	• Review of market research	9			
	Customer segmentation				
	• Customer profiling				
	Persona development				
	• Validation and feedback				
	Prioritisation and selection				
	Communication and messaging				
	Competitor analysis				
	Identify competitors				
	Competitor profiling				

	 SWOT analysis Market positioning 			
	 Customer feedback and reviews 			
	Pricing analysis			
	Differentiation strategy			
	• Benchmarking and improvement			
	Business plan preparation			
	Business plan framework			
	Market analysis			
	Product/ service description			
	 Marketing and sales strategy 			
	 Operations plan 			
	Financial projections			
	Risk management			
3	Prototype development plan preparation			
U	Prototype requirements analysis			
	Technical specifications			
	Development approach			
	Development timeline			
	Resource allocation			
	• Testing and quality assurance			
	Iterative development and feedback loop			
	• Documentation and version control			
	Prototype development Stakeholder engagement strategies			
	• Investors			
4	• Partners	9		
•	• Customers			
	Advisors & Mentors			

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Micro Project	Internal Ex-1	Internal Ex-2	Total
5	35	10	10	60

Micro project / Comprehensive Business Plan:

The course will be evaluated based on a comprehensive Business Plan Report submitted and prototype development evaluation at the end of the course. The report should integrate learnings and activities from each module, demonstrating a deep understanding of the concepts and your ability to apply them to a chosen engineering venture.

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A		Part B	Total
•	Minimum 1 and Maximum 2	•	2 questions will be given from each module, out of	
	Questions from each module.		which 1 question should be answered.	
•	Total of 8 Questions, each carrying	•	Each question can have a maximum of 3 subdivisions.	40
		•	Each question carries 9 marks.	τv
	3 marks (6x2 =12 marks)		(4x7 = 28 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Gain foundational knowledge of Innovation and Entrepreneurship,	К2
COI	Intellectual Property Rights (IPR) and their importance for startups.	
CON	Develop a framework for identifying, curating and validating	К3
02	engineering-based business ideas.	
CO2	Learn essential tools for understanding product-market fit and	К3
COS	customer needs.	
CO4	Create a comprehensive business plan for a new venture.	K6
COF	Develop skills for prototyping, stakeholder engagement, and team	K4
CO5	collaboration.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO	Map	ping	Table:
0010	11100	P5	1 40101

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	3	3						
CO2	2	2	3	3	3	3	3	3	3			
CO3	2	2	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	The Engineering Handbook	Richard C.Dorf	CRC Press	2 nd Edn, 2004					
2	The Innovator's DNA	Clayton M. Christensen and Jeffrey H. Dyer	Harvard Business Review Press;	Revised edition (June 4, 2019)					
3	Start with Why	Simon sinek	Portfolio	Reprint edition (December 27, 2011)					
4	Business Model Generation	Alexander Osterwalder & Yves Pigneur	Wiley	2010					
5	The Engineering Entrepreneur: A Practical Guide to Starting and Running a Successful Engineering Business in India	Saibal Gupta and Ashok Jhunjhunwala	Sage Publications	2011					
(Innovation and Entrepreneurship for Engineers	Bharat Bhushan and Seema Bhushan	CRS Press	2016					
0 7	Indian Patent Law	P. Narayanan	Eastern Book Company	2 nd edn/ 2020					
8	The Law of Copyright and Designs	B.L. Wadehra	Universal Law	5 th edn/2010					
9	Intellectual Property Rights (Including IPR in the Digital Age)	Prabuddha Ganguli	Tata McGraw-Hill Education	2001					
10	The Startup India Manifesto: A Guide to the Indian Startup Ecosystem	Rashmi Bansal and Deepinder Goyal	Westland Publications	2020					

SEMESTER S1/S2

HEALTH AND WELLNESS

(Common to all Groups)

Course Code	UCPWT127	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	1	Exam Hours	Nil
Prerequisites (if any)	None	Course Type	

Course Objectives:

- 1. To provide essential knowledge on physical activity, health, and wellness.
- **2.** To ensure students understand body systems, exercise principles, nutrition, mental health, and disease management.
- **3.** To educate students on the benefits of yoga, the risks of substance abuse and basic first aid skills.
- 4. To equip students with the ability to lead healthier lifestyles.
- 5. To enable students to design effective and personalized exercise programs.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Human Body Systems related to Physical activity and its functions:	
	Respiratory System - Cardiovascular System.	
	Musculoskeletal System and the Major Muscle groups of the Human Body.	
	Quantifying Physical Activity Energy Expenditure and Metabolic	
	equivalent of task (MET)	_
1	Exercise Continuum: Light-intensity physical activity, Moderate -	4
	intensity physical activity, Vigorous -intensity physical activity.	
	Defining Physical Activity, Aerobic Physical Activity, Anaerobic	
	Physical Activity, Exercise and Health-Related Physical Fitness.	
	FITT principle to design an Exercise programme Components of Health	
	related Physical Fitness : - Cardiorespiratory	

	Fitness- Muscular strength- Muscular endurance- Flexibility- Body composition.	2024	51/52
2	Concept of Health and Wellness: Health and wellness differentiation, Factors affecting health and wellness. Mental health and Factors affecting mental health. Sports and Socialization: Sports and character building - Leadership through Physical Activity and Sports Diet and nutrition: Exploring Micro and Macronutrients: Concept of Balanced diet Carbohydrate & the Glycemic Index Animal & Plant - based Proteins and their Effects on Human Health Dietary Fats & their Effects on Human Health , Essential Vitamins and Minerals	2	2
3	Lifestyle management strategies to prevent / manage common hypokinetic diseases and disorders - Obesity - Cardiovascular diseases (e.g., coronary artery disease, hypertension) - Diabetes - Osteoporosis - Musculoskeletal disorders (e.g., osteoarthritis, Low back pain, Kyphosis, lordosis, flat foot, Knock knee) Meaning, Aims and objectives of yoga - Classification and importance of of Yogic Asanas (Sitting, Standing, lying) Pranayama and Its Types - Active Lifestyle and Stress Management Through Yoga Understanding on substance abuse and addiction - Psychoactive substances & its ill effects- Alcohol- Opioids- Cannabis -Sedative - Cocaine -Other stimulants, including caffeine -Hallucinogens - Tobacco -Volatile solvents.	4	ł
4	 First aid and principles of First Aid: Primary survey: ABC (Airway, Breathing, Circulation). Qualities of a Good First Aider First aid measures for: - Cuts and scrapes - Bruises - Sprains - Strains - Fractures - Burns - Nosebleeds. First Aid Procedures: Cardiopulmonary Resuscitation (CPR) - Heimlich Maneuver - Applying a sling Sports injuries: Classification (Soft Tissue Injuries - Abrasion, Contusion, Laceration, Incision, Sprain & Strain) 	2	2

Additional Topics

- Need for and Importance of Physical Education and its relevance in interdisciplinary context. Understanding of the Endocrine System
- Developing a fitness profile
- Healthy foods habits for prevention and progression of Lifestyle Diseases. Processed foods and unhealthy eating habits.
- Depression Anxiety Stress
- Different ways of carrying an injured person. Usage of Automated external defibrillator

Course Assessment Method (CIE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance Case Study/Micro project/Presentation		Activity evaluation	Total
10	20	20	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Explain the different human body systems and describe various types of physical activities along with methods to measure and quantify these activities.	K2				
CO2	Explain how to maintain or improve health and wellness through psychological practices, dietary habits, and sports activities.	K2				
CO3	Discuss about common hypokinetic disorders and musculoskeletal disorders, and describe the importance of leading a healthy lifestyle through the practice of yoga and abstaining from addictive substances.	K2				
CO4	Explain the basics of first aid and describe common sports injuries	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				2		3		3	3	2		2
CO2				2		3		2	2			2
CO3				0		3		3				2
CO4				2		3						2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Foundations of Nutrition	Bhavana Sabarwal	Commonwealth Publishers	1999					
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh, A., & Grant, A.	2022					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Fit to be Well Essential Concept	Thygerson, A. L., Thygerson, S. M., & Thygerson, J. S.	Jones & Bartlett Learning.	2018					
2	Introduction to physical education, fitness, and sport.	Siedentop, D., & Van der Mars, H.	Human kinetics.	2022					
3	Substance Use Disorders. Manual for Physicians.	Lal, R., & Ambekar, A. (2005).	National Drug Dependence Treatment Centre, New Delhi	2005					
4	The exercise health connection-how to reduce your risk of disease and other illnesses by making exercise your medicine.	Nieman, D. C., & White, J. A	Public Health	1998					
5	ACSM's resource manual for guidelines for exercise testing and prescription.	Lippincott Williams & Wilkins.	American College of Sports Medicine.	2012					
6	Exercise Physiology: energy, nutrition and human performance.	Katch, F. I., Katch, V. L., & McArdle, W. D.	Lippincott Williams & Wilkins	2010					

Continuous Internal Evaluation Marks (CIE): for the Health and wellness course

Title	Method of Evaluation	
Attendance	Students must attend at least 75% of both theory and practical classes. They will receive 10 marks based on their class attendance. Students who do not meet the minimum attendance requirement for a course, as specified in the B. Tech regulations, will not be eligible to proceed to the next criteria.	
Assignment / Presentation	Assignments will be given to students to assess their understanding of the subjects taught. Students will be required to make presentations on the subjects taught in class, and their understanding of the subjects will be assessed. Based on the Assignments and Presentations the students will be awarded marks out of 20	
Activity Evaluation	 The Assignment / Presentation faculty handling the class will use the tests from the Fitness Protocols and Guidelines for ages 18+ to 65 years, as set forth by FIT India. Measurements will be taken for all the tests of the FIT India Fitness Protocol and the evaluation will be based on the benchmark score received for the following tests: 1. V Sit Reach Test 2. Partial Curl Up - 30 seconds 3. Push Ups (Male) and Modified Push Up (Female) 4. Two (2) Km Run/Walk Students who achieve a total benchmark score of 8 across the aforementioned 4 tests will be awarded pass marks for activity evaluation. Students who score better will be awarded a maximum mark of 20. 	

Students will be evaluated as follows.

	Physically challenged and medically unfit students can opt for an objective test to
A ati-riter E-ralmation	demonstrate their knowledge of the subjects taught. Based on their performance in
- Special	the objective test, they will be awarded marks out of 20.
Circumstances	
	Students who enrolled themselves in the NCC during the course period (between
Activity Evaluation	the start and end dates of the program) and attended 5 college level parades will
- Special	be awarded pass marks for activity evaluation. Students who attend more parades
Considerations -	will be eligible for a maximum mark of 20 based on their parade attendance.
NCC	

Tests to evaluated as per Criterion - 2 and Benchmark Scores

V Sit Reach Test

How to Perform:

1. The subject removes their shoes and sits on the floor with the measuring line between their legs and the soles of their feet placed immediately behind the baseline, heels 8-12" apart.

2. The thumbs are clasped so that hands are together, palms facing down and placed on the measuring line.

3. With the legs held flat by a partner, the subject slowly reaches forward as far as possible, keeping the fingers on baseline and feet flexed.

4. After three tries, the student holds the fourth reach for three seconds while that distance is recorded.

5. Make sure there are no jerky movements, and that the fingertips remain level and the legs flat.

Infrastructure/Equipment Required:

1. A tape for marking the ground, marker pen, and ruler.

2. With the tape mark a straight line two feet long on the floor as the baseline, and a measurement line perpendicular to the midpoint of the baseline extending two feet on each side.

3. Use the marker pen to indicate every centimeter and millimeter along the measurement line. The point where the baseline and the measuring line intersect is the zero point.

Scoring: The score is recorded in centimeters and millimeters as the distance reached by the hand, which is the difference between the zero point (where the baseline and measuring line intersect) and the final position.

Level	Benchmark Score	Measurement (cm)
1	2	<11
2	4	12-13
3	6	14-17
4	7	18-19
5	8	20-21
6	9	22
7	10	>22

Scoring for V Sit Reach Test for Males

Scoring for V Sit Reach Test for Females

Level	Benchmark Score	Measurement (cm)
1	2	<14
2	4	15-16
3	6	17-19
4	7	20-21
5	8	22
6	9	23
7	10	>23

Partial Curl Up - 30 seconds

How to Perform:

1. The subject lies on a cushioned, flat, clean surface with knees flexed, usually at 90 degrees, with hands straight on the sides (palms facing downwards) closer to the ground, parallel to the body.

2. The subject raises the trunk in a smooth motion, keeping the arms in position, curling up the desired amount (at least 6 inches above/along the ground towards the parallel strip).

3. The trunk is lowered back to the floor so that the shoulder blades or upper back touch the floor.

Infrastructure/Equipment Required:

Flat clean cushioned surface with two parallel strips (6 inches apart), Stopwatch Scoring:

Record the maximum number of Curl ups in a certain time period 30 seconds.

Scoring for Partial Curl Up - 30 seconds Test for Males

Level	Benchmark Score	Numbers
1	2	<25
2	4	25-30
3	6	31-34
4	7	35-38
5	8	39-43
6	9	44-49
7	10	>49

Scoring for Partial Curl Up - 30 seconds Test for Females

Level	Benchmark Score	Numbers
1	2	<18
2	4	18-24
3	6	25-28
4	7	29-32
5	8	33-36
6	9	37-43
7	10	>43

Push Ups for Male/Modified Push Ups for Female How to Perform:

1. A standard push up begins with the hands and toes touching the floor, the body and legs in a straight line, feet slightly apart, the arms at shoulder width apart, extended and at a right angle to the body.

2. Keeping the back and knees straight, the subject lowers the body to a predetermined point, to touch some other object, or until there is a 90-degree angle at the elbows, then returns back to the starting position with the arms extended.

3. This action is repeated, and the test continues until exhaustion, or until they can do no more in rhythm or have reached the target number of push-ups.

4. For Female: push-up technique is with the knees resting on the ground.

Infrastructure/Equipment Required:

Flat clean cushioned surface/Gym mat

Scoring: Record number of correctly completed pushups.

Scoring for Push Ups for Male

Level	Benchmark Score	Numbers
1	2	<4
2	4	04- 10
3	6	11 -18
4	7	19-34
5	8	35-46
6	9	47-56
7	10	>56

Level	Benchmark Score	Numbers
1	2	0-1
2	4	2 - 5
3	6	6 -10
4	7	11 - 20
5	8	21-27
6	9	27-35
7	10	>35

Scoring for Modified Push Ups for Female

2 Km Run/Walk

How to Perform:

1. Participants are instructed to run or walk 2 kms in the fastest possible pace.

2. The participants begin on signal (Starting point)- "ready, start". As they cross the finish line, elapsed time should be announced to the participants.

3. Walking is permitted but the objective is to cover the distance in the shortest possible time.

Infrastructure/Equipment Required:

Stopwatch, whistle, marker cone, lime powder,

measuring tape, 200 or 400 m with 1.22 m (minimum 1 m) width preferably on a flat and even playground with a marking of starting and finish line. You can also use any application on your mobile phone that tells you the distance.

Scoring: Time taken for completion (Run or Walk) in min, sec.

Scoring for 2Km Run/walk for Male

Level	Benchmark Score	Minutes : Seconds
1	2	> 11:50
2	4	10:42
3	6	09:44
4	7	08:59
5	8	08:33
6	9	07:37
7	10	>07:37

Scoring for 2Km Run/walk for Female

Level	Benchmark Score	Minutes: Seconds
1	2	>13:47
2	4	12:51
3	6	12:00
4	7	11:34
5	8	10:42
6	9	09:45
7	10	>09:45

SEMESTER S2

IT WORKSHOP

(Common to Group A&B)

Course Code	GXESL208	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- **1.** To provide a basic understanding about computer hardware, software, and computer network.
- **2.** To familiarize the learner with the web development process using HTML, CSS, and Javascript.

Details of Experiment

Expt. No	Experiment
	(Minimum 10 Experiments)
1	Practice Computer Hardware – Familiarization CPU Box, Motherboard, CPU & Chip-set, Interface cards, Card slots, Hard disk, Cables, SMPS, NIC, Various ports, etc. Computer Peripherals - I/O Devices. Storage devices, Interface cards – Buses – Firmware
2	Familiarization of Boot process
3	Familiarizing installation of Linux and Windows operating systems
4	Familiarizing basic Unix/Linux commands - ls, mkdir, cp, mv, grep, rmdir, chmod, useradd, passwd, history, dmesg, cpuinfo, uname, du, time, write, fdisk

5	Familiarizing networking hardware - RJ45, UTP, fibre, switch, NIC, router, Wireless Access Point (WAP), modem				
6	Familiarizing basic networking commands - ifconfig, ping, traceroute, nslookup, ssh, scp, telnet, ftp				
7	View network traffic using Wireshark/Packet tracer				
8	Familiarizing the steps how to configure and establishing a network connecting				
9	Shell programming in Linux(bash)				
10	Create a web page and deploy on a local web server.				
11	Use Javascript to validate forms.				
12	Create an image slider using HTML, CSS, and JavaScript. Allow users to navigate between images using previous and next buttons.				
13	Familiarisation of LaTeX - Basic only				
14	Familiarisation of Development Environments - Visual studio code, Sublime Text, Atom				
15	Introducing Repositories - Git / Bitbucket				

Course Assessment Method

(CIE: 50 Marks, ESE 50 Marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

Mandatory requirements for ESE:

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

Course Outcomes (COs)

At the end of the course the student will be able to:

Course Outcome		
CO1	Experiment with the fundamental hardware components of a computer and how to interface them with software systems.	К3
CO2	Make use of the command line of Linux operating system and shell programming.	К3
CO3	Experiment with the data network communication scenarios using Wireshark.	К3
CO4	Develop basic websites using HTML, CSS & JavaScript and manage the versions.	К3

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), : No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Invitation to Computer Science	G.Michael Schneider, Judith Gersting	Cengage	2/e, 2020				
2	LINUX for Developers: Jumpstart Your Linux Programming Skills	William Rothwell	Person	1/e, 2018				
3	HTML, CSS, and JavaScript All in One, Sams Teach Yourself	Julie C. Meloni Jennifer Kyrnin	Pearson	1/e, 2018				

	Reference Books							
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year				
1	The Architecture of Computer Hardware, Systems Software, & Networking: An Information Technology Approach	Irv Englander	Wiley	5/e, 2014				
2	Mastering Git : Attain expert level proficiency with Git for enhanced productivity and efficient collaboration	Jakub Narębski	Packt	1/e, 2016				
3	Web Design with HTML, CSS, JavaScript and Jquery	Jon Duckett	Wiley	1/e, 2014				

Video Links (NPTEL, SWAYAM)					
Sl. No. Link ID					
1	https://overthewire.org/wargames/bandit/				
2	https://www.w3schools.com/				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted