SEMESTER S2 MATHEMATICS FOR INFORMATION SCIENCE – 2

(Group A)

Course Code	GAMAT201	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Elementary matrix operations	Course Type	Theory

Course Objectives:

1. To provide a comprehensive understanding of linear algebra focusing on fundamental concepts and applications, and to develop necessary skills to effectively utilize linear algebra in advanced studies and professional practice.

SYLLABUS

Module No.	Syllabus Description			
1	Linear systems of equations, Solution by Gauss elimination, Row echelon form and rank of a matrix, Fundamental theorem for linear systems - homogeneous and non-homogeneous (without proof), Eigen values and Eigen vectors of matrices, Diagonalization of matrices. [Text 1: Relevant topics from sections 7.3, 7.4, 7.5, 8.1, 8.4]	9		
2	Vector Spaces, Examples of vector space $-R^n$ and M_{mxn} only, Subspaces, Examples as subspaces of R^n and M_{mxn} . Linear combinations of vectors in a vector space, Spanning sets, Linear dependence and independence, Basis for a vector space, The dimension of vector space, Coordinate representation in R^n , Change of basis in R^n : Transition Matrix (without proof). [Text 2: Relevant topics from sections 4.2, 4.3, 4.4, 4.5, 4.7]	9		

	Vector length and unit vector, Dot product and angle between two vectors,	
	The Cauchy- Schwarz Inequality, Inner product, Examples as R^n and	
	M_{2x2} , Properties of inner products, Definitions of length, distance and	
3	angle, Orthogonal projections in inner product spaces, Orthogonal and	
	orthonormal sets, Orthogonal and orthonormal basis, Gram-Schmidt	9
	orthonormalization process (without proof), The least squares problem,	
	Orthogonal Subspaces, Solving the least square problems.	
	[Text 2: Relevant topics from sections 5.1, 5.2, 5.3, 5.4]	
	Linear Transformations, Properties of linear transformations, Linear	
	Transformation given by a matrix, Rotation in R^2 , Projection in R^3 ,	
	Kernel of a Linear Transformation and its basis, Range of a Linear	
4	Transformation and its basis, Rank and Nullity of a Linear	9
	Transformation, Sum of Rank and Nullity (without proof), Matrices for	
	Linear Transformations.	
	[Text 2: Relevant topics from sections 6.1, 6.2, 6.3]	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Tota l
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Solve system of linear equations, to evaluate eigen values and eigen vectors of matrices and to diagonalize matrices.	К3		
CO2	Understand the concepts of vector spaces and subspaces and to apply their properties.	К3		
СОЗ	Describe inner product spaces and their properties, to apply orthonormalization process and to solve least square problems.	К3		
CO4	Understand the concept of linear transformation and to apply its properties, to find the rank and nullity of a linear transformation and to find the matrices of linear transformations.			

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016			
2	Elementary Linear Algebra	Ron Larson	Cengage Learning	8 th edition, 2017			

	Reference Books						
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year			
1	Mathematics for Machine Learning	Marc Peter Deisenroth, A. Aldo Faisal & Cheng SoonOng	Cambridge University Press	1 st edition, 2020			
2	Linear algebra and learning from data	Gilbert Strang	Wellesley- Cambridge Press	1 st edition, 2019			
3	Elementary Linear Algebra	Stephen Andrilli & David Hecker	Academic Press Inc.	4 th edition, 2010			
4	Elementary Linear Algebra	Howard Anton, Chris Rorres	Wiley	11 th edition, 2019			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/111/107/111107164/					
2	https://archive.nptel.ac.in/courses/111/107/111107164/					
3	https://archive.nptel.ac.in/courses/111/107/111107164/					
4	https://archive.nptel.ac.in/courses/111/107/111107164/					

SEMESTER S1/S2 PHYSICS FOR INFORMATION SCIENCE

(Common to Group A)

Course Code	GAPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- To equip students with a strong foundation in the fundamentals of Physics, impart this knowledge
 within the context of Information Science disciplines, cultivate scientific attitudes and critical
 thinking skills, and enable students to integrate Physics concepts with their core Information
 Science programs.
- 2. To make the students gain practical knowledge to correlate the theoretical studies and to develop practical applications of engineering.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Electrical conductivity Classical free electron theory, Electrical conductivity in metals, Fermi Dirac distribution, Variation of Fermi function with temperature, Fermi Energy, Energy bands, Classification of materials into conductor, semiconductor and insulator. Superconductivity, Transition temperature, Critical field, Meissner effect, Type I and Type II Super conductors. BCS Theory, Applications of superconductors.	9
2	Quantum Mechanics Introduction, Concept of uncertainty and conjugate observables	9

	(qualitative), Uncertainty principle (statement only), Application of	
	uncertainty principle- Absence of electron inside nucleus - Natural line	
	broadening, Wave function – properties - physical interpretation,	
	Formulation of time dependent and time independent Schrodinger	
	equations, Particle in a one- dimensional box - Derivation of energy eigen	
	values and normalized wave function, Quantum Mechanical Tunnelling	
	(Qualitative)	
	Semiconductor Physics	
	Intrinsic semiconductor, Derivation of density of electrons in conduction	
	band and density of holes in valence band, Intrinsic carrier concentration,	
3	Variation of Intrinsic carrier concentration with temperature, Extrinsic	
	semiconductor (qualitative)	9
	Formation of p-n junction, Fermi level in semiconductors-intrinsic and	
	extrinsic, Energy band diagram of p-n junction - Qualitative description of	
	charge flow across a p-n junction - Forward and reverse biased p-n junctions,	
	Diode equation (Derivation), I-V Characteristics of p-n junction	
	Semiconductor Devices	
	Semiconductor devices- Rectifiers- Full wave and Half wave. Zener diode-	
	VI characteristics, Tunnel diode-VI characteristics, SemiconductorLaser	
4	(Construction and working), Applications	
		9
	Photonic devices (Qualitative treatment only) - Photo detectors (Junction	
	and PIN photodiodes), Solar cells- IV Characteristics, Efficiency, Stringing	
	of Solar cells to solar panel, Light Emitting Diode, Applications	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain electrical conductivity and Superconductivity.	K2
CO2	Explain the behaviour of matter in the atomic and subatomic level through the principles of quantum mechanics.	K2
CO3	Apply the fundamentals of Semiconductor Physics in engineering.	К3
CO4	Describe the behaviour of semiconductor materials in semiconductor devices.	K2
CO5	Apply basic knowledge of principles and theories in physics to conduct experiments.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3	3										3
CO4	3											3
CO5	3	3			3							3

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Engineering Physics	H K Malik and A K Singh	McGraw Hill	2 nd Edition, 2017
2	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6 th Edition, 2003
3	A Textbook of Engineering Physics	MN Avadhanulu, P G Kshirsagar, TVS Arun murthy	S. Chand	11 th Edition, 2018
		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Semiconductor Devices Fundamentals	Robert F Pierret	Pearson Education	1995
2	Advanced Semiconductor Fundamental	Robert F Pierret	Pearson Education	2 nd Edition, 2002
3	Solid State Electronic Devices	Ben G Streetman and Sanjay Kumar Banerjee	Pearson Education 6/e	2010
4	Solid State Physics	S.O. Pillai	New age international publishers	10 th Edition, 2022
5	Introduction to Solid State Physics	Charles Kittel	Wiley India Edition	2019
6	Advanced Engineering Physics	Premlet B	Phasor Books	10 th Edition ,2017
7	A Text Book of Engineering Physics	I. Dominic and. A. Nahari,	Owl Books Publishers	Revised Edition, 2016

	Video Links (NPTEL, SWAYAM)
Module No.	Link ID
1	https://nptel.ac.in/courses/115103108
2	https://nptel.ac.in/courses/115101107 https://nptel.ac.in/courses/115102023
3	https://nptel.ac.in/courses/108106181
4	https://nptel.ac.in/courses/108108112

Continuous Assessment (10 Marks)

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

iv. Viva Voce (3 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during aviva voce session. *Final Marks Averaging:* The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure andunderstanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programmingtask

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List

(Minimum 10 Experiments)

Experiment No.	Experiment
1	Diode characteristics
2	Zener diode- V-I characteristics
3	Tunnel diode –V-I characteristics
4	Half wave rectifier
5	Full wave rectifier
6	Hall effect in semiconductors
7	Determination of band gap energy of a semiconductor
8	Characteristics of LED
9	Solar Cell- V-I and Intensity Characteristics
10	Laser – Determination of wavelength using diffraction grating
11	Laser- To measure the wavelength using a millimeter scale as a grating

B.Tech 2024 –S1/S2

12	Compare the variation of current with potential difference, for a metal, filament bulb and semiconductor diode.
13	Determination of dielectric constant
14	CRO -Measurement of frequency and amplitude of wave forms
15	Photo diode - V-I Characteristics
16	Numerical aperture of optical fiber

SEMESTER S2

FOUNDATIONS OF COMPUTING: FROM HARDWARE ESSENTIALSTO WEB DESIGN

(Common to Group A & B)

Course Code	GXEST203	CIE Marks	40
Teaching Hours/Week(L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the students to the fundamental building blocks of an IT infrastructure including the computing systems, its peripherals, Operating Systems and Networking.
- 2. To make the learners capable of developing and deploying simple and dynamic websites.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Computer Hardware – CPU, Memory - Memory hierarchy: registers, cache, RAM, virtual memory, Motherboard - Computer Peripherals - I/O devices, Storage devices- HDDs, SSDs, optical drives, I/O communication and device	9
	management, Interface cards – Buses – Firmware - Boot process	
2	Binary representation of data and numbers, Integer Representation, Data storage units - bits, bytes, kilobytes, etc., ASCII and Unicode, CPU Architecture and Instruction Set: Basic CPU architecture - ALU, registers, control unit, Instruction format and assembly language (basics only) Fetch-execute cycle and instruction execution.	9
3	Computer System Software - Operating Systems, Basic commands in Linux / Windows, Shell scripting (bash). Computer Communications – LAN, MAN, WAN, Client/Server networks, Peer-to-Peer networks, Topologies. Basics of IP addresses, DHCP, NAT, Network Security (Desktop & Perimeter), DNS, VPN, Routers, Client-Server, Internet, WWW, Web servers.	9

	Web Design (Basics of HTML, CSS, and JavaScript) – Understanding the	
4	web content delivery, Understanding HTML and XHTML Connections,	9
	Understanding Cascading Style Sheets, Understanding JavaScript	

Course Assessment Method (CIE: 40 marks, ESE:60)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the fundamental components and the working of an IT	K2
	environment.	
CO2	Explain the data representations, CPU architectures, and the basic	K2
	functioning of a computer.	
CO3	Explain the operating systems, computer network architecture, and	K2
	necessary protocols used.	
CO4	Develop simple interactive web pages and validate the inputs.	К3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3										3
CO3	3	3										3
CO4	3	3	3		3							3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Invitation to Computer Science	G.Michael Schneider, Judith Gersting	Cengage	2/e , 2020				
2	The Architecture of Computer Hardware, Systems Software, & Networking: An Information Technology Approach	Irv Englander	Wiley	5/e, 2014				
3	HTML, CSS, and JavaScript All in One, Sams TeachYourself	Julie C. MeloniJennifer Kyrnin	Pearson	1/e, 2020				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	The Elements of Computing Systems, second edition: Building a Modern Computer from First Principles	Noam Nisan and Shimon Schocken	The MIT Press	2/e, 2021			
2	Peter Norton's Introduction to Computers	Peter Notron	McGrawHill	6/e, 2010			
3	Web Design with HTML, CSS, JavaScript and Jquery	Jon Duckett	Wiley	1/e, 2014			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://www.nand2tetris.org/				
2	https://onlinecourses.swayam2.ac.in/nou20_cs05/preview				

SEMESTER S2

PROGRAMMING IN C

(Common to Group A & B)

Course Code	GXEST204	CIE Marks	40
Teaching Hours/Week(L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To prepare learner to write versatile C programs for solving computational problems that they come across in their professional life.
- **2.** To equip the learner to write efficient C programs using suitable language constructs to solve real world computational problems.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	C Fundamentals - Character Set, Constants, Identifiers, Keywords, Basic	
1	Data types, Variables, Operators and its precedence, Bit-wise operators,	9
	Expressions; Statements - Input and Output statements; Structure of a C	
	program; Simple programs.	
	Control Statements - if, if-else, nested if, switch, while, do-while, for, break	
	& continue, nested loops.	
	Arrays - Single dimensional arrays, Defining an array, Array initialization,	
	Accessing array elements; Enumerated data type; Type Definition; Two-	
2	dimensional arrays – Defining a two-dimensional array; Programs for matrix	
	processing; Programs for sequential search; Bubble sort;	9
	Strings - Declaring a string variable, Reading and displaying strings,	
	S tring related library functions – Programs for string matching.	

3	Functions - Function definition, Function call, Function prototype, Parameter passing; Recursion; Passing array to function; Macros - Defining andcalling macros; Command line Arguments. Structures - Defining a Structure variable, Accessing members, Array of structures, Passing structure to function; Union. Storage Class - Storage Classes associated with variables: automatic, static, external and register.	9
4	Pointers - Declaration, Operations on pointers, Passing pointer to a function, Accessing array elements using pointers, Processing strings using pointers, Pointer to pointer, Array of pointers, Pointer to function, Pointer to structure, Dynamic Memory Allocation. Files- Different types of files in C, Opening & Closing a file, Writing to and Reading from a file, Processing files, Library functions related to file – fseek(), ftell(), fread(), fwrite().	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Infer a computational problem and develop C programs from them using basic constructs of C language including the control statements.	K2					
CO2	Develop C programs using arrays, matrices, and strings.	К3					
CO3	Utilize functions to find solution to the computational problems by dividing it into a number of modules and abstract data types.	К3					
CO4	Develop C programs using pointers for dynamic data handling.	К3					
CO5	Use files in C to permanently store and manipulate data.	К3					

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12
CO1	3	3	3	3	-	-	-	-	-	-	-	3
CO2	3	3	3	3	-	-	-	-	-	-	-	3
CO3	3	3	3	3	-	-	-	-	-	_	-	3
CO4	3	3	3	3	-	-	-	-	-	-	-	3
CO5	3	3	3	3	-	-	-	-	-	-	-	3

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Programming with C	Byron S Gottfried	Mc Graw Hill	4/e, 2018
2	Problem Solving and Program Design in C	Jeri R. Hanly, Elliot B. Koffman	Pearson	8/e, 2016

	Reference Books										
Sl. No	Title of the Book	tle of the Book Name of the Author/s Name of the P									
1	The C Programming Language	Brian W. Kernighan andDennis Ritchie	Pearson	2/e, 2015							
2	C The Complete Reference	Herbert Schildt	Mc Graw Hill	4/e, 2017							
3	Let us C	Yashavant Kanetkar	BPB Publishers	19/e, 2022							
4	Programming in ANSI C	E Balagurusamy	Mc Graw Hill	9/e, 2024							

SEMESTER S2 ENGINEERING ENTREPRENEURSHIP AND IPR

(Common to all Branches)

Course Code	UCEST206	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	2:1:0:0	ESE Marks	40
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop a framework for identifying, curating and validating engineering-based business ideas.
- 2. Learn essential tools for understanding product-market fit and customer needs.
- **3.** Create a comprehensive business plan for a new venture.
- **4.** Gain foundational knowledge of Intellectual Property Rights (IPR) and their importance forstartups.
- 5. Develop skills for prototyping, stakeholder engagement, and team collaboration.

SYLLABUS

Module No.	Syllabus Description						
	Introduction to Ideation, Innovation & Entrepreneurship						
	What is Ideation?						
	Understanding Innovation						
	Frameworks for Innovation						
	The Entrepreneurial Mindset						
1	Starting a Business, types formation statutory compliances.	9					
	Resources for Aspiring Entrepreneurs						
	Introduction to Intellectual Property Rights (IPR)						
	Types of IPR: Patents, trademarks, copyrights, trade secrets						
	Strategies for protecting intellectual property based on the type						
	of innovation						

	Role of IPR in securing funding and competitive advantage
	Importance of building a strong team
	Identifying roles
	Skill sets
	Team dynamics
	Identifying Pain Points and problem statement
	Idea Generation Techniques
	Developing and Refining Ideas
	Develop strategies for bringing your innovation to life
	Problem and solution canvas preparation
	Orientation and canvas introduction
	Customer needs assessment
	Market segmentation
	Value proposition
	Competitive analysis
	Market entry strategy
	Market validation
	Regulatory and legal considerations
	Customer profiling
	Review of market research
2	• Customer segmentation 9
	Customer profiling
	Persona development
	Validation and feedback
	Prioritization and selection
	Communication and messaging
	Competitor analysis
	Identify competitors
	Competitor profiling
	SWOT analysis
	Market positioning
	Customer feedback and reviews

	Pricing analysis						
	Differentiation strategy						
	Benchmarking and improvement						
	Business plan preparation						
	Business plan framework						
	Market analysis						
	Product/ service description						
	Marketing and sales strategy						
	Operations plan						
	Financial projections						
	Risk management						
3	Prototype development plan preparation						
	Prototype requirements analysis						
	Technical specifications						
	Development approach						
	Development timeline						
	Resource allocation						
	Testing and quality assurance						
	Iterative development and feedback loop						
	Documentation and version control						
	Prototype development						
	Stakeholder engagement						
	strategies	9					
4	• Investors						
	• Partners						
	• Customers						
	Advisors & Mentors						

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Micro Project	Internal Ex-1	Internal Ex-2	Total	
5	35	10	10	60	

Micro project / Comprehensive Business Plan:

The course will be evaluated based on a comprehensive Business Plan Report submitted and prototype development evaluation at the end of the course. The report should integrate learnings and activities from each module, demonstrating a deep understanding of the concepts and your ability to apply them to a chosen engineering venture.

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 1 or 2 Questions from each module. Total of 8 Questions, each carrying3 marks (6x2 =12 marks) 	• 2 questions will be given from each module, out ofwhich 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. (4x7 = 28 marks)	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Gain foundational knowledge of Innovation and Entrepreneurship, Intellectual Property Rights (IPR) and their importance for startups.	K2
CO2	Develop a framework for identifying, curating and validating engineering-based business ideas.	К3
CO3	Learn essential tools for understanding product-market fit and customer needs.	К3
CO4	Create a comprehensive business plan for a new venture.	К6
CO5	Develop skills for prototyping, stakeholder engagement, and team collaboration.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	3	3						
CO2	2	2	3	3	3	3	3	3	3			
CO3	2	2	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3

	Text Books				
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year	
1	The Engineering Handbook	Richard C.Dorf	CRC Press		
2	The Innovator's DNA	Clayton M. Christensenand Jeffrey H. Dyer	Harvard Business Review Press;	Revised edition (June 4, 2019)	
3	Start with Why	SIMON SINEK	Portfolio	Reprint edition (December 27, 2011)	
4	Business Model Generation	Alexander Osterwalder & Yves Pigneur	Wiley	2010	
5	The Engineering Entrepreneur: A Practical Guide to Starting and Running a Successful Engineering Business in India	Saibal Gupta and Ashok Jhunjhunwala	Sage Publications	2011	
6	Innovation and Entrepreneurship for Engineers	Bharat Bhushan and Seema Bhushan	CRS Press	2016	
7	Indian Patent Law	P. Narayanan	Eastern Book Company	2 nd edn/ 2020	
8	The Law of Copyright and Designs	B.L. Wadehra	Universal Law	5 th edn/2010	
9	Intellectual Property Rights (Including IPR in the Digital Age)	Prabuddha Ganguli	Tata McGraw-Hill Education	2001	
10	The Startup India Manifesto: A Guide to the Indian Startup Ecosystem	Rashmi Bansal and Deepinder Goyal	Westland Publications	2020	

SEMESTER S1/S2 HEALTH AND WELLNESS

(Common to all Groups)

Course Code	UCPWT127	CIE Marks	50
Teaching Hours/Week(L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	1	Exam Hours	Nil
Prerequisites (if any)	None	Course Type	Theory and Practical

Course Objectives:

- 1. To provide essential knowledge on physical activity, health, and wellness.
- **2.** To ensure students understand body systems, exercise principles, nutrition, mental health, and disease management.
- **3.** To educate students on the benefits of yoga, the risks of substance abuse and basic first aid skills.
- **4.** To equip students with the ability to lead healthier lifestyles.
- **5.** To enable students to design effective and personalized exercise programs.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Human Body Systems related to Physical activity and its functions:	
	Respiratory System - Cardiovascular System .	
	Musculoskeletal System and the Major Muscle groups of the HumanBody.	
	Quantifying Physical Activity Energy Expenditure and Metabolic equivalent	
1	of task (MET)	4
1	Exercise Continuum: Light-intensity physical activity, Moderate -intensity	4
	physical activity, Vigorous -intensity physical activity.	
	Defining Physical Activity, Aerobic Physical Activity, Anaerobic	

	Physical Activity, Exercise and Health-Related Physical Fitness.	
	FITT principle to design an Exercise programme	
	Components of Health-related Physical Fitness: - Cardiorespiratory	
	Fitness- Muscular strength- Muscular endurance- Flexibility- Body	
	composition.	
	Concept of Health and Wellness: Health and wellness differentiation,	
	Factors affecting health and wellness. Mental health and Factors	
	affecting mental health.	
	Sports and Socialization: Sports and character building - Leadership	
	through Physical Activity and Sports	
	Diet and nutrition: Exploring Micro and Macronutrients: Concept of	
2	Balanced diet Carbohydrate & the Glycemic Index	2
	Animal & Plant - based Proteins and their Effects on Human Health	
	Dietary Fats & their Effects on Human Health	
	Essential Vitamins and Minerals	
	Essential Vitaliniis and Millerais	
	Lifestyle management strategies to prevent / manage common	
	hypokinetic diseases and disorders - Obesity - Cardiovascular diseases	
	(e.g., coronary artery disease, hypertension) - Diabetes - Osteoporosis	
	- Musculoskeletal disorders (e.g., osteoarthritis, Low back pain,	
	Kyphosis, lordosis, flat foot, Knock knee)	
	Meaning, Aims and objectives of yoga - Classification and importance	
3	of of Yogic Asanas (Sitting, Standing, lying) Pranayama and Its Types	4
	- Active Lifestyle and Stress Management Through Yoga	-
	Understanding on substance abuse and addiction - Psychoactive	
	substances & its ill effects- Alcohol- Opioids- Cannabis -Sedative -	
	Cocaine -Other stimulants, including caffeine -Hallucinogens -	
	Tobacco -Volatile solvents.	

4	First aid and principles of First Aid: Primary survey: ABC (Airway, Breathing, Circulation). Qualities of a Good First Aider First aid measures for: - Cuts and scrapes - Bruises - Sprains - Strains - Fractures - Burns - Nosebleeds. First Aid Procedures: Cardiopulmonary Resuscitation (CPR) - Heimlich Maneuver - Applying a sling Sports injuries: Classification (Soft Tissue Injuries - Abrasion, Contusion, Laceration, Incision, Sprain & Strain)	2	
---	---	---	--

Additional Topics

- Need and Importance of Physical Education and its relevance in interdisciplinarycontext. Understanding of the Endocrine System
- Developing a fitness profile
- Healthy foods habits for prevention and progression of Lifestyle Diseases.
 Processedfoods and unhealthy eating habits.
- Depression Anxiety Stress
- Different ways of carrying an injured person. Usage of Automated external defibrillator

Course Assessment Method(CIE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Case Study/Micro project/Presentation	Activity evaluation	Total
10	20	20	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the different human body systems and describe varioustypes of physical activities along with methods to measure and quantify these activities.	К2
CO2	Explain how to maintain or improve health and wellness through psychological practices, dietary habits, and sports activities.	K2
CO3	Discuss about common hypokinetic disorders and musculoskeletal disorders, and describe the importance of leading a healthy lifestyle through the practice of yoga and abstaining from addictive substances.	K2
CO4	Explain the basics of first aid and describe common sports injuries	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				2		3		3	3	2		2
CO2				2		3		2	2			2
CO3				0		3		3				2
CO4				2		3						2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Foundations of Nutrition	Bhavana Sabarwal	Common wealth Publishers	1999			
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh, A., & Grant, A.	2022			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fit to be Well EssentialConcept	Thygerson, A. L., Thygerson, S. M., & Thygerson, J. S.	Jones & Bartlett Learning.	2018		
2	Introduction to physical education, fitness, and sport.	Siedentop, D., & Van der Mars, H.	Human kinetics.	2022		
3	Substance Use Disorders.Manual for Physicians.	Lal, R., & Ambekar,A	National Drug Dependence TreatmentCentre, New Delhi	2005		
4	The exercise health connection-how to reduceyour risk of disease and other illnesses by making exercise your medicine.	Nieman, D. C., & White, J. A	Public Health	1998		
5	ACSM's resource manual for guidelines for exercisetesting and prescription.	Lippincott Williams& Wilkins.	American College ofSports Medicine.	2012		
6	Exercise Physiology: energy, nutrition and humanperformance.	Katch, F. I., Katch, V. L., & McArdle, W. D.	Lippincott Williams & Wilkins	2010		

Continuous Internal Evaluation Marks (CIE): for the Health and wellness course

Students will be evaluated as follows.

Title	Method of Evaluation
Attendance	Students must attend at least 75% of both theory and practical classes. They will receive 10 marks based on their class attendance. Students who do not meet the minimum attendance requirement for a course, as specified in the B. Tech regulations, will not be eligible to proceed to the next criteria.
Assignment / Presentation	Assignments will be given to students to assess their understanding of the subjects taught. Students will be required to make presentations on the subjects taught in class, and their understanding of the subjects will be assessed. Based on the Assignments and Presentations the students will be awarded marks out of 20

	The Assignment / Presentation faculty handling the class will use the tests from the Fitness Protocols and Guidelines for ages 18+ to 65 years, as set forth by FIT India. Measurements will be taken for all the tests of the FIT India Fitness Protocol and the evaluation will be based on the benchmark score received for the following tests: 1. V Sit Reach Test
Activity Evaluation	2. Partial Curl Up - 30 seconds3. Push Ups (Male) and Modified Push Up (Female)
	4. Two (2) Km Run/Walk
	Students who achieve a total benchmark score of 8 across the aforementioned 4 tests will be awarded pass marks for activity evaluation. Students who score better will be awarded a maximum mark of 20.
Activity Evaluation - Special Circumstances	Physically challenged and medically unfit students can opt for an objective test to demonstrate their knowledge of the subjects taught. Based on their performance in the objective test, they will be awarded marks out of 20.
Activity Evaluation - Special Considerations NCC	Students who enrolled themselves in the NCC during the course period (between the start and end dates of the program) and attended 5 college level parades will be awarded pass marks for activity evaluation. Students who attend more parades will be eligible for a maximum mark of 20 based on their parade attendance.

Tests to evaluated as per Criterion - 2 and Benchmark Scores

V Sit Reach Test

How to Perform:

- 1. The subject removes their shoes and sits on the floor with the measuring line between their legs and the soles of their feet placed immediately behind the baseline, heels 8-12" apart.
- 2. The thumbs are clasped so that hands are together, palms facing down and placed on themeasuring line.

- **3.** With the legs held flat by a partner, the subject slowly reaches forward as far as possible, keeping the fingers on baseline and feet flexed.
- **4.** After three tries, the student holds the fourth reach for three seconds while that distance is recorded.
- 5. Make sure there are no jerky movements, and that the fingertips remain level and the legs flat.

Infrastructure/Equipment Required:

- 1. A tape for marking the ground, marker pen, and ruler.
- 2. With the tape mark a straight line two feet long on the floor as the baseline, and a measurement line perpendicular to the midpoint of the baseline extending two feet on each side.
- **3.** Use the marker pen to indicate every centimeter and millimeter along the measurement line. The point where the baseline and the measuring line intersect is the zero point.

Scoring: The score is recorded in centimeters and millimeters as the distance reached by the hand, which is the difference between the zero point (where the baseline and measuring line intersect) and the final position.

Scoring for V Sit Reach Test for Males

Level	Benchmark Score	Measurement (cm)	
1	2	<11	
2	4	12-13	
3	6	14-17	
4	7	18-19	
5	8	20-21	
6	9	22	
7	10	>22	

Scoring for V Sit Reach Test for Females

Level	Benchmark Score	Measurement (cm)	
1	2	<14	
2	4	15-16	
3	6	17-19	
4	7	20-21	
5	8	22	
6	9	23	
7	10	>23	

Partial Curl Up - 30 seconds

How to Perform:

- 1. The subject lies on a cushioned, flat, clean surface with knees flexed, usually at 90 degrees, with hands straight on the sides (palms facing downwards) closer to the ground, parallel to the body.
- **2.** The subject raises the trunk in a smooth motion, keeping the arms in position, curling up the desired amount (at least 6 inches above/along the ground towards the parallel strip).
- **3.** The trunk is lowered back to the floor so that the shoulder blades or upper back touch the floor.

Infrastructure/Equipment Required:

Flat clean cushioned surface with two parallel strips (6 inches apart), Stopwatch Scoring: Record the maximum number of Curl ups in a certain time period 30 seconds.

Scoring for Partial Curl Up - 30 seconds Test for Males

Level	Benchmark Score	Numbers	
1	2	<25	
2	4	25-30	
3	6	31-34	
4	7	35-38	
5	8	39-43	
6	9	44-49	
7	10	>49	

Scoring for Partial Curl Up - 30 seconds Test for Females

Level	Benchmark Score	Numbers
1	2	<18
2	4	18-24
3	6	25-28
4	7	29-32
5	8	33-36
6	9	37-43
7	10	>43

Push Ups for Male/Modified Push Ups for Female

How to Perform:

- 1. A standard push up begins with the hands and toes touching the floor, the body and legs in a straight line, feet slightly apart, the arms at shoulder width apart, extended and at a right angle to the body.
- 2. Keeping the back and knees straight, the subject lowers the body to a predetermined point, to touch some other object, or until there is a 90-degree angle at the elbows, then returns back to the starting position with the arms extended.
- **3.** This action is repeated, and the test continues until exhaustion, or until they can do no more inrhythm or have reached the target number of push-ups.
- **4.** For Female: push-up technique is with the knees resting on the ground.

Infrastructure/Equipment Required:

Flat clean cushioned surface/Gym mat

Scoring: Record number of correctly completed pushups.

Scoring for Push Ups for Male

Level	Benchmark Score	Numbers
1	2	<4
2	4	04- 10
3	6	11 -18
4	7	19-34
5	8	35-46
6	9	47-56
7	10	>56

Scoring for Modified Push Ups for Female

Level	Benchmark Score	Numbers
1	2	0-1
2	4	2 - 5
3	6	6 -10
4	7	11 - 20
5	8	21-27
6	9	27-35
7	10	>35

2 Km Run/Walk

How to Perform:

- 1. Participants are instructed to run or walk 2 kms in the fastest possible pace.
- **2.** The participants begin on signal (Starting point)- "ready, start". As they cross the finish line, elapsed time should be announced to the participants.
- **3.** Walking is permitted but the objective is to cover the distance in the shortest possible time.

Infrastructure/Equipment Required:

Stopwatch, whistle, marker cone, lime powder, measuring tape, 200 or 400 m with 1.22 m (minimum 1 m) width preferably on a flat and even playground with a marking of starting and finish line. You can also use any application on your mobile phone that tells you the distance.

Scoring: Time taken for completion (Run or Walk) in min, sec.

Scoring for 2Km Run/walk for Male

Level	Benchmark Score	Minutes: Seconds
1	2	> 11:50
2	4	10:42
3	6	09:44
4	7	08:59
5	8	08:33
6	9	07:37
7	10	>07:37

Scoring for 2Km Run/walk for Female

Level	Benchmark Score	Minutes: Seconds
1	2	>13:47
2	4	12:51
3	6	12:00
4	7	11:34
5	8	10:42
6	9	09:45
7	10	>09:45

SEMESTER S2

IT WORKSHOP

(Common to Group A&B)

Course Code	GXESL208	CIE Marks	50
Teaching Hours/Week(L: T:P: R)	0:0:2:0	ESE Marks	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To provide a basic understanding about computer hardware, software, and computer network.
- 2. To familiarize the learner with the web development process using HTML, CSS, and Javascript.

Details of Experiments

Expt.	Experiment	
No	(Minimum 10 Experiments)	
1	Practice Computer Hardware – Familiarization CPU Box, Motherboard, CPU & Chip-set, Interface cards, Card slots, Hard disk, Cables, SMPS, NIC, Various ports, etc. Computer Peripherals - I/O Devices. Storage devices, Interface cards – Buses – Firmware	
2	Familiarization of Boot process	
3	Familiarizing installation of Linux and Windows operating systems	
4	Familiarizing basic Unix/Linux commands - ls, mkdir, cp, mv, grep, rmdir, chmod, useradd, passwd, history, dmesg, cpuinfo, uname, du, time, write, fdisk	
5	Familiarizing networking hardware - RJ45, UTP, fibre, switch, NIC, router, Wireless Access Point (WAP), modem	
6	Familiarizing basic networking commands - ifconfig, ping, traceroute, nslookup, ssh, scp, telnet, ftp	
7	View network traffic using Wireshark/Packet tracer	

8	Familiarizing the steps how to configure and establishing a network connecting
9	Shell programming in Linux(bash)
10	Create a web page and deploy on a local web server.
11	Use Javascript to validate forms.
12	Create an image slider using HTML, CSS, and JavaScript. Allow users to navigate between images using previous and next buttons.
13	Familiarisation of LaTeX - Basic only
14	Familiarisation of Development Environments - Visual studio code, Sublime Text, Atom
15	Introducing Repositories - Git / Bitbucket

Course Assessment Method (CIE: 50 Marks, ESE: 50 Marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

Mandatory requirements for ESE:

• Submission of Record: Students shall be allowed for the end semester examination onlyupon submitting the duly certified record.

Course Outcomes (COs)

At the end of the course the student will be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Experiment with the fundamental hardware components of a computer and how to interface them with software systems.	К3
CO2	Make use of the command line of Linux operating system and shell programming.	КЗ
CO3	Experiment with the data network communication scenarios using Wireshark.	К3
CO4	Develop basic websites using HTML, CSS & JavaScript and manage the versions.	К3

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), : No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Invitation to ComputerScience	G. Michael Schneider, Judith Gersting	Cengage	2/e, 2020			
2	LINUX for Developers: Jumpstart Your Linux Programming Skills	William Rothwell	Pearson	1/e, 2018			
3	HTML, CSS, and JavaScript -All in One, Sams Teach Yourself	Julie C. Meloni Jennifer Kyrnin	Pearson	1/e, 2018			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
	The Architecture of Computer Hardware, Systems					
1	Software, & Networking: An Information Technology Approach	Irv Englander	Wiley	5/e, 2014		
2	Mastering Git: Attain expertlevel proficiency with Git forenhanced productivity and efficient	Jakub Narębski	Packt	1/e, 2016		
	collaboration					
3	Web Design with HTML, CSS, JavaScript, and	Jon Duckett	Wiley	1/e, 2014		
3	Jquery.	John Dackett	,, 110)	170, 2014		

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	https://overthewire.org/wargames/bandit/				
2	https://www.w3schools.com/				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, andtroubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principlesduring a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, andrecord are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to theexperiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of thesubject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S2

DISCRETE MATHEMATICS

(Common to all Computer Science and its allied branches)

Course Code	PCCST205	CIE Marks	40
Teaching Hours/Week(L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To equip students with the ability to analyze and solve problems using discrete mathematicaltechniques.
- 2. To give a deeper understanding of mathematical logic, set theory, and proof techniques such as direct proofs, proof by contradiction, and mathematical induction.

SYLLABUS

Module No.	Syllabus Description		
1	Sets, Functions, and Relations Sets and Subsets, Venn Diagrams, Set Operations, Set Identities, Generalized Unions and Intersections, The Principle of Inclusion-Exclusion (Basic and Generalized versions), and applications. Function definition, Injections, Surjections and Bijections, Inverse Functions, and Compositions of Functions, Cardinality of Sets, Cantor diagonalization argument Relations and Their Properties, Composition of relations, n-ary Relations, Representing Relations Using Matrices, Equivalence Relations, Equivalence Classes, Partial Orderings, Hasse	Hours 11	
	Diagrams, Maximal and Minimal Elements, Lattices		

	Mathematical logic and proofs		10 2 7 10
	Propositional Logic, Applications of Propositional Logic, Propositional		
	Equivalences, Predicates and Quantifiers, Nested Quantifiers, Rules of		
	Inference	11	1
2	Introduction to Proofs, Methods of Proving Theorems - Direct proof, Indirect proof (Proof by Contraposition), Proof by Contradiction, Proof by counter		
	examples, The Pigeonhole Principle.		
	Induction and Recurrences		
	Mathematical Induction, Weak and Strong induction		
3	Recursive (Inductive) definitions and recurrence relations, Modeling with	11	1
	Recurrence Relations, Solving Linear Recurrence Relations (homogeneous		
	and nonhomogeneous), Generating Functions, Using Generating Functionsto		
	Solve Recurrence Relations.		
_	Group theory		
4	Groups - Definition, Examples, and Elementary Properties, Abelian group,	11	1
	Permutation group, Subgroup, Homomorphisms, Isomorphisms, and Cyclic		
	Groups, Cosets and Lagrange's Theorem		

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions.

Part A	Part B	Total
Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Check the validity of predicates in Propositional and Quantified Propositional Logic using truth tables, deductive reasoning and inference theory on Propositional Logic	К3
CO2	Solve counting problems by applying the elementary counting techniques - Rule of Sum, Rule of Product, Permutation, Combination, Binomial Theorem, Pigeonhole Principle and Principle of Inclusion and Exclusion.	К3
CO3	Classify binary relations into various types and illustrate an application for each type of binary relation, in Computer Science.	К2
CO4	Illustrate an application for Partially Ordered Sets and Complete Lattices, in Computer Science	К3
CO5	Explain Generating Functions and solve First Order and Second Order Linear Recurrence Relations with Constant Coefficients	К3
C06	Illustrate the abstract algebraic systems - Semigroups, Monoids, Groups, Homomorphism and Isomorphism of Monoids and Groups.	К2

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	3	3	3								2
CO2	3	3	3	3								2
CO3	3	3	3	3								2
CO4	3	3	3	3								2
CO5	3	3	3	3								2
CO6	3	3	3	3								2

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Discrete Mathematics and its Applications	Kenneth H. Rosen, Kamala Krithivasan	McGraw Hill	8/e, 2021		

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Schaum's Outline of Discrete Mathematics	Marc Lipson, Seymour Lipschutz	McGraw-Hill	3/e, 2021	
2	Discrete Mathematics	Kenneth A. Ross, Charles R.B. Wright	Pearson	5/e, 2012	

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://nptelvideos.com/lecture.php?id=6033				
2	https://nptelvideos.com/lecture.php?id=6024				
3	https://nptelvideos.com/lecture.php?id=6051				
4	https://nptelvideos.com/lecture.php?id=6058				