SEMESTER II

	1.4.4.1	A KEITH KEIT	0.0	100	
SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	210	4	4
В	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
С	EST 110	ENGINEERING GRAPHICS	2-1-0	3	3
D	EST 120	BASICS OF CIVIL & & MECHANICALENGINEERING ONICS ENGINEERING	4-0-0	4	4
E	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S	PHL 120	ENGINEERING PHYSICSLAB	0-0-2	2	1
Т	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

MAT	VECTOR C/	ALCULUS,	CATEGORY	L	Т	Ρ	CREDIT	Year	of
102	DIFFERENTIAL EQUATIO						Introduction		
	TRANSFORMS	BSC	3	1	0	4	2019		

Preamble: This course introduces the concepts and applications of differentiation and integration of vector valued functions, differential equations, Laplace and Fourier Transforms. The objective of this course is to familiarize the prospective engineers with some advanced concepts and methods in Mathematics which include the Calculus of vector valued functions, ordinary differential equations and basic transforms such as Laplace and Fourier Transforms which are invaluable for any engineer's mathematical tool box. The topics treated in this course have applications in all branches of engineering.

Prerequisite: Calculus of single and multi variable functions.

Course Outcomes: After the completion of the course the student will be able to

CO 1	Compute the derivatives and line integrals of vector functions and learn their applications										
CO 2	Evaluate surface and volume integrals and learn their inter-relations and applications.										
CO 3	Solve homogeneous and non-homogeneous linear differential equation with constant										
	coefficients										
CO 4	Compute Laplace transform and apply them to solve ODEs arising in engineering										
CO 5	Determine the Fourier transforms of functions and apply them to solve problems arising in										
	engineering										

Mapping of course outcomes with program outcomes

	PO 1	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO	PO 9	PO 10	PO 11	PO 12
		2						8		_		
CO 1	3	3	3	3	2	1			1	2		2
CO 2	3	3	3	3	2	1			1	2		2
CO 3	3	3	3	3	2	1			1	2		2
CO 4	3	3	3	3	2	1			1	2		2
CO 5	3	3	3	3	2	1			1	2		2

Assessment Pattern

Bloom's Category	Continuous Asse	essment Tests	End Semester Examination			
	Test 1	Test 2	(Marks)			
	(Marks	(Marks)				
Remember	10	10	20			
Understand	20	20	40			
Apply	20	20	40			
Analyse						
Evaluate						

Create

Mark distribution

Total Marks	CIE (Marks)	ESE (Marks)	ESE Duration	
150	50	100	3 hours	
Continuous In	0 50 100 3 hours			
Attendance	And Street Law	: 10) marks	
Continuous As	ssessment Test (2 numb	ers) : 25	5 marks	
Assignment/C	uiz/Course project	: 15	5 marks	

Assignments: Assignment should include specific problems highlighting the applications of the methods introduced in this course in science and engineering.

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Compute the derivatives and line integrals of vector functions and learn their applications

- 1. How would you calculate the speed, velocity and acceleration at any instant of a particle moving in space whose position vector at time t is r(t)?
- 2. Find the work done by the force field $F = (e^x y^3)i + (\cos y + x^3)$ a particle that travels once around the unit circle centred at origin having radius 1.
- 3. When do you say that a vector field is conservative? What are the implications if a vector field is conservative?

Course Outcome 2 (CO2): Evaluate surface and volume integrals and learn their inter-relations and applications

- 1. Write any one application each of line integral, double integral and surface integral.
- 2. Use the divergence theorem to find the outward flux of the vector field F(x, y, z) = zk across the

$$x^2 + y^2 + z^2 = a^2$$

3. State Greens theorem. Use Green's theorem to express the area of a plane region bounded by a curve as a line integral.

Course Outcome 3 (CO3): Solve homogeneous and non-homogeneous linear differential equation with constant coefficients

1. If $y_1(x)$ and $y_2(x)$ are solutions of y'' + py' + qy = 0, where p, q are constants, show that

 $y_1(x) + y_2(x)$ is also a solution.

- 2. Solve the differential equation $y'' + y = 0.001x^2$ using method of undetermined coefficient.
- 3. Solve the differential equation of $y^{''} 3y^{'} + 3y^{'} y = e^{x} x 1$.

Course Outcome 4 (CO4): Compute Laplace transform and apply them to solve ODEs arising in engineering

- 1. What is the inverse Laplace Transform of $(s) = \frac{3s-137}{s^2+2s+4}$?
- 2. Find Laplace Transform of Unit step function.
- 3. Solve the differential equation of $y'' + 9y = \delta\left(t \frac{\pi}{2}\right)$? Given y(0) = 2, y'(0) = 0

Course Outcome 5(CO5): Determine the Fourier transforms of functions and apply them to solve problems arising in engineering

- 1. Find the Fourier integral representation of function defined by $f(x) = e^{-x}$ for x > 0 and f(x) = 0 for x < 0.
- 2. What are the conditions for the existence of Fourier Transform of a function f(x)?
- 3. Find the Fourier transform of f(x) = 1 for |x| < 1 and f(x) = 0 otherwise.

Model Question paper

QP CODE:

Reg No:

Name :_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: MAT 102

Max. Marks: 100

Duration: 3 Hours

VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS

(2019-Scheme)

(Common to all branches)

PAGES:3

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Is the vector r where r = xi + yj + zk conservative. Justify your answer.
- 2. State Greens theorem including all the required hypotheses
- 3. What is the outward flux of F(x, y, z) = xi + yj + zk across any unit cube.
- 4. What is the relationship between Green's theorem and Stokes theorem?
- 5. Solve y'' + 4y' + 2.5y = 0
- 6. Does the function $y = C_1 \cos x + C_2 \sin x$ form a solution of y'' + y = 0?. Is it the general solution? Justify your answer.
- 7. Find the Laplace transform of $e^{-t} \sinh 4t$
- 8. Find the Laplace inverse transform of $\frac{1}{s(s^2+\omega^2)}$.
- 9. Given the Fourier transform $\frac{1}{\sqrt{2}}e^{-\frac{\omega^2}{4}}$ of $f(x) = e^{-x^2}$, find the Fourier transform of xe^{-x^2}
- 10. State the convolution theorem for Fourier transform

PART B

(Answer one full question from each module. Each full question carries 14 marks)

MODULE 1

11a) Prove that the force field $F = e^{y}i + xe^{y}j$ is conservative in the entire xy-plane

b) Use Greens theorem to find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

- 12 a) Find the divergence of the vector field $F = \frac{c}{(x^2+y^2+z^2)^{3/2}}(xi+yj+zk)$
 - b) Find the work done by the force field F(x, y, z) = xyi + yzj + xzk along C where

C is the curve $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$

MODULE II

13 a) Use divergence theorem to find the outward flux of the vector field

 $F = 2xi + 3yj + z^3k$ across the unit cube bounded by or x = 0, y = 0, z = 0, x = 1, y = 1, z = 1

- b) Find the circulation of F = (x z)i + (y x)j + (z xy)k using Stokes theorem around the triangle with vertices A(1,0,0), B(0,2,0) and C(0,0,1)
- 14 a) Use divergence theorem to find the volume of the cylindrical solid bounded by $x^2 + 4x + y^2 = 7$, z = -1, z = 4, given the vector field $\mathbf{F} = \mathbf{x}i + \mathbf{y}j + \mathbf{z}k$ across surface of the cylinder

b) Use Stokes theorem to evaluate $\int_{C} F dr$ where $F = x^{2}i + 3xj - y^{3}k$ where Cis

the circle $x^2 + y^2 = 1$ in the xy- plane with counterclockwise orientation looking

down the positive z-axis

MODULE III

15 a) Solve $y'' + 4y' + 4y = x^2 + e^{-x} \cos x$ b) Solve $y''' - 3y'' + 3y' - y = e^x - x - 1$ 16 a) Solve $y''' + 3y'' + 3y' + y = 30e^{-x}$ giveny(0) = 3, y'(0) = -3, y''(0) = -47b) Using method of variation of parameters, solve $y'' + y = \sec x$

MODULE IV

17 a) Find the inverse Laplace transform of $F(s) = \frac{2(e^{-s}-e^{-3s})}{s^2-4}$

b) Solve the differential equation $y'' + 16y = 4\delta(t - 3\pi)$; y(0) = 2, y'(0) = 0 using Laplace transform

- 18 a) Solve y'' + 3y' + 2y = f(t) where f(t) = 1 for 0 < t < 1 and f(t) = 1 for t > 1using Laplace transform
 - b) Apply convolution theorem to find the Laplace inverse transform of $\frac{1}{s^2(s^2+\omega^2)}$

MODULE V

19 a) Find the Fourier cosine integral representation for $f(x) = e^{-kx}$ for x > 0 and

k > 0 and hence evaluate $\int_0^\infty \frac{\cos wx}{k^2 + w^2}$ the function

- b) Does the Fourier sine transform $f(x) = x^{-1} \sin x$ for $0 < x < \infty$ exist? Justify your answer
- 20 a) Find the Fourier transform of f(x) = |x| for |x| < 1 and f(x) = 0 otherwise
 - b) Find the Fourier cosine transform of $f(x) = e^{-ax}$ for a > 0

Syllabus

Module 1 (Calculus of vector functions)

(Text 1: Relevant topics from sections 12.1, 12.2, 12.6, 13.6, 15.1, 15.2, 15.3)

Vector valued function of single variable, derivative of vector function and geometrical interpretation, motion along a curve-velocity, speed and acceleration. Concept of scalar and vector fields , Gradient and its properties, directional derivative , divergence and curl, Line integrals of vector fields, work as line integral, Conservative vector fields , independence of path and potential function(results without proof).

Module 2 (Vector integral theorems)

(Text 1: Relevant topics from sections 15.4, 15.5, 15.6, 15.7, 15.8)

Green's theorem (for simply connected domains, without proof) and applications to evaluating line integrals and finding areas. Surface integrals over surfaces of the form z = g(x, y), y = g(x, z) or x = g(y, z), Flux integrals over surfaces of the form z = g(x, y), y = g(x, z) or x = g(y, z), divergence theorem (without proof) and its applications to finding flux integrals, Stokes' theorem (without proof) and its applications to finding line integrals of vector fields and work done.

Module- 3 (Ordinary differential equations)

(Text 2: Relevant topics from sections 2.1, 2.2, 2.5, 2.6, 2.7, 2.10, 3.1, 3.2, 3.3)

Homogenous linear differential equation of second order, superposition principle, general solution, homogenous linear ODEs with constant coefficients-general solution. Solution of Euler-Cauchy equations (second order only). Existence and uniqueness (without proof). Non homogenous linear ODEs-general solution, solution by the method of undetermined coefficients (for the right hand side of the form x^n , e^{kx} , sinax, cosax, $e^{kx}sinaxe^{kx}cosax$ and their linear combinations), methods of variation of parameters. Solution of higher order equations-homogeneous and non-homogeneous with constant coefficient using method of undetermined coefficient.

Module- 4 (Laplace transforms)

(Text 2: Relevant topics from sections 6.1,6.2,6.3,6.4,6.5)

Laplace Transform and its inverse ,Existence theorem (without proof) , linearity,Laplace transform of basic functions, first shifting theorem, Laplace transform of derivatives and integrals, solution of differential equations using Laplace transform, Unit step function, Second shifting theorems. Dirac delta function and its Laplace transform, Solution of ordinary differential equation involving unit step function and Dirac delta functions. Convolution theorem(without proof)and its application to finding inverse Laplace transform of products of functions.

Module-5 (Fourier Tranforms)

(Text 2: Relevant topics from sections 11.7,11.8, 11.9)

Fourier integral representation, Fourier sine and cosine integrals. Fourier sine and cosine transforms, inverse sine and cosine transform. Fourier transform and inverse Fourier transform, basic properties. The Fourier transform of derivatives. Convolution theorem (without proof)

Text Books

- 1. H. Anton, I. Biven S.Davis, "Calculus", Wiley, 10th edition, 2015.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley, 10th edition, 2015.

Reference Books

- 1. J. Stewart, Essential Calculus, Cengage, 2nd edition, 2017
- G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9 th Edition, Pearson, Reprint, 2002.
- 3. Peter O Neil, Advanced Engineering Mathematics, 7th Edition, Thomson, 2007.
- Louis C Barret, C Ray Wylie, "Advanced Engineering Mathematics", Tata McGraw Hill, 6th edition, 2003.
- 5. VeerarajanT."Engineering Mathematics for first year", Tata McGraw Hill, 2008.
- 6. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th edition, 2010.
- 7. Srimanta Pal, Subodh C. Bhunia, "Engineering Mathematics", Oxford University Press, 2015.
- 8. Ronald N. Bracewell, "The Fourier Transform and its Applications", McGraw Hill International Editions, 2000.

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Calculus of vector functions (9 hours)	·
1.1	Vector valued function of a scalar variable - derivative of vector valued function of scalar variable t-geometrical meaning	2
1.2	Motion along a curve-speed , velocity, acceleration	1
1.3	Gradient and its properties, directional derivative , divergent and curl	3
1.4	Line integrals with respect to arc length, line integrals of vector fields. Work done as line integral	2
1.5	Conservative vector field, independence of path, potential function	1

2	Vector integral theorems(9 hours)	
2.1	Green's theorem and it's applications	2
2.2	Surface integrals , flux integral and their evaluation	3
2.3	Divergence theorem and applications	2
2.4	Stokes theorem and applications	2
3	Ordinary Differential Equations (9 hours)	
3.1	Homogenous linear equation of second order, Superposition principle, general solution	1
3.2	Homogenous linear ODEs of second order with constant coefficients	2
3.3	Second order Euler-Cauchy equation	1
3.4	Non homogenous linear differential equations of second order with constant coefficient-solution by undetermined coefficients, variation of parameters.	3
3.5	Higher order equations with constant coefficients	2
4	Laplace Transform (10 hours)	
4.1	Laplace Transform , inverse Transform, Linearity, First shifting theorem, transform of basic functions	2
4.2	Transform of derivatives and integrals	1
4.3	Solution of Differential equations, Initial value problems by Laplace transform method.	2
4.4	Unit step function Second shifting theorem	2
4.5	Dirac Delta function and solution of ODE involving Dirac delta function	2
4.6	Convolution and related problems.	1
5	Fourier Transform (8 hours)	
5.1	Fourier integral representation	1
5.2	Fourier Cosine and Sine integrals and transforms	2
5.3	Complex Fourier integral representation, Fourier transform and its inverse transforms, basic properties	3
5.4	Fourier transform of derivatives, Convolution theorem	2

PHT	ENGINEERING PHYSICS A	CATEGORY	L	Т	Ρ	CREDIT	YEAR OF
100	(FOR CIRCUIT BRANCHES)						INTRODUCTION
		BSC	3	1	0	4	2019

Preamble: The aim of the Engineering Physics Program is to offer students a solid background in the fundamentals of Physics and to impart that knowledge in engineering disciplines. The program is designed to develop scientific attitudes and enable the students to correlate the concepts of Physics with the core programmes

Prerequisite: Higher secondary level Physics, Mathematical course on vector calculus, differential equations and linear algebra

Course Outcomes: After the completion of the course the student will be able to

CO 1	Compute the quantitative aspects of waves and oscillations in engineering systems.
CO 2	Apply the interaction of light with matter through interference, diffraction and identify
	these phenomena in different natural optical processes and optical instruments.
CO 3	Analyze the behaviour of matter in the atomic and subatomic level through the principles of
	quantum mechanics to perceive the microscopic processes in electronic devices.
CO 4	Classify the properties of magnetic materials and apply vector calculus to static magnetic
	fields and use Maxwell's equations to diverse engineering problems
CO 5	Analyze the principles behind various superconducting applications, explain the working of
	solid state lighting devices and fibre optic communication system

Mapping of course outcomes with program outcomes

\square	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2						1	2			1
CO 2	3	2						1	2			1
CO 3	3	2						1	2			1
CO 4	3	1				2133	1	1	2			1
CO 5	3	1						1	2			1

Assessment Pattern

	Continuous Asse	essment Tests			
Bloom's Category	Test 1	Test 2	End Semester Examination		
	(Marks)	(Marks)	(Marks)		
Remember	15	15	30		
Understand	25	25	50		
Apply	10	10	20		

Analyse		
Evaluate		
Create		

Mark distribution

Total Marks	CIE marks	ESE marks	ESE Duration		1.43
150	50	100	3 hours	2631	61

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

Continuous Internal Evaluation Pattern:

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Explain the effect of damping force on oscillators.
- 2. Distinguish between transverse and longitudinal waves.
- 3. (a) Derive an expression for the fundamental frequency of transverse vibration in a stretched string.
 - (b) Calculate the fundamental frequency of a string of length 2 m weighing 6 g kept stretched by a load of 600 kg.

Course Outcome 2 (CO2):

- 1. Explain colours in thin films.
- 2. Distinguish between Fresnel and Fraunhofer diffraction.
- 3. (a) Explain the formation of Newton's rings and obtain the expression for radii of bright and dark rings in reflected system. Also explain how it is used to determine the wavelength of a monochromatic source of light.
 - (b) A liquid of refractive index μ is introduced between the lens and glass plate.

What happens to the fringe system? Justify your answer.

Course Outcome 3 (CO3):

- 1. Give the physical significance of wave function ?
- 2. What are excitons ?
- 3. (a) Solve Schrodinger equation for a particle in a one dimensional box and obtain its energy eigen values and normalised wave functions.
- (b) Calculate the first three energy values of an electron in a one dimensional box of width 1 A⁰ in electron volt.

Course Outcome 4 (CO4):

- 1. Compare displacement current and conduction current.
- 2. Mention any four properties of ferro magnetic materials.
- 3. (a) Starting from Maxwell's equations, derive the free space electromagnetic wave equation and show that velocity of electromagnetic wave is 1/ $(\mu_0 \epsilon_0)^{\frac{14}{2}}$

(b) An electromagnetic wave is described by E = 100 exp $8\pi i [10^{14} t - (10^{6} z / 3)]$ V/m. Find the direction of propagation of the wave,speed of the wave and magnetic flux density in the wave.

Course Outcome 5 (CO5):

- 1. Explain the working of a solar cell.
- 2. Distinguish between Type I and Type II super conductors.
- 3. (a) Define numerical aperture and derive an expression for it.
 - (b) Explain the working of intensity modulated fibre optic sensor.

Model Question p	aper
------------------	------

QP CODE:	PAGES:3
Reg No:	
Name :	
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY F MONTH & <i>Course Code</i> Course Name: Engin	& YEAR : PHT 100
Max. Marks: 100	Duration: 3 Hours
PART	A
Answer all Questions. Each	question carries 3 Marks
1. Compare electrical and mechanical oscillators	
2. Distinguish between longitudinal and transverse v	vaves
3. Write a short note on antireflection coating.	
4. Diffraction of light is not as evident in daily experi	ence as that of sound waves. Give reason.
5. State and explain Heisenberg's Uncertainty princi	ole. With the help of it explain natural
line broadening.	S. N. 7
6. Explain surface to volume ratio of nanomaterials.	
7. State Faraday's laws of electromagnetic induction	
8. Compare displacement current and conduction c	urrent
9. List four important applications of superconducto	rs.
10. Give the working principle of LED.	(10x3=30)
PART	В

Answer any one full question from each module. Each question carries 14 Marks

Module 1

- 11. (a) Derive the differential equation of damped harmonic oscillator and deduce its solution. Discuss the cases of over damped, critically damped and under damped cases. (10)
 - (b) The frequency of a tuning fork is 500 Hz and its Q factor is 7×10^{4} . Find the relaxation time. Also calculate the time after which its energy becomes 1/10 of its initial undamped value.(4)
- 12. (a) Derive an expression for the velocity of propagation of a transverse wave in a stretched string. Deduce laws of transverse vibrations. (10)
- (b) The equation of transverse vibration of a stretched string is given by y =0.00327 sin (72.1x-2.72t)m, in which the numerical constants are in S.I units. Evaluate (i) Amplitude (ii) Wavelength (iii) Frequency and (iv)Velocity of the wave.
 (4)

Module 2

- 13.(a)Explain the formation of Newton's rings and show that the radius of dark ring is proportional to the square root of natural numbers. How can we use Newton's rings experiment to determine the refractive index of a liquid.
 (10)
- (b) Two pieces of plane glass are placed together with a piece of paper between two at one end. Find the angle of the wedge in seconds if the film is viewed with a monochromatic light of wavelength 4800Å. Given $\beta = 0.0555$ cm. (4)
- 14. (a) Explain the diffraction due to a plane transmission grating. Obtain the grating equation. (10)
 - (b) A grating has 6000 lines per cm. Find the angular separation of the two yellow lines of mercury of wavelengths 577 nm and 579 nm in the second order. (4)

Module 3

15.(a) Derive time dependent and independent Schrodinger equations.	(10)
---	------

- (b) An electron is confined to one dimensional potential box of length 2Å. Calculate the energies corresponding to the first and second quantum states in eV. (4)
- 16.(a) Classify nanomaterials based on dimensionality of quantum confinement and explain the following nanostructures. (i) nano sheets (ii) nano wires (iii) quantum dots. (10)
 - (b) Find the de Broglie wavelength of electron whose kinetic energy is 15 eV. (4)

Module 4

17.(a) State Poynting's Theorem. Calculate the value of Poynting vector at the surface of the sun if the power radiated by the sun is 3.8×10^{26} W and its radius is 7×10^{8} m. (5)

- (b) Distinguish between paramagnetic, diamagnetic and ferromagnetic materials. (9)
- 18.(a) Starting from Maxwell's Equations, derive electromagnetic wave equations in free space. (10)
 - (b) If the magnitude of **H** in a plane wave is 1 A/m, find the magnitude of **E** in free space. (4)

Module 5

- 19.(a) Show that superconductors are perfect diamagnets. Distinguish between Type I and
 - Type II superconductors with suitable examples. (10)
 - (b) Write a short note on high temperature superconductors. (4)
- 20.(a) Define numerical aperture of an optic fibre and derive an expression for the NA of a step index fibre with a neat diagram. (10)
 - (b) Calculate the numerical aperture and acceptance angle of a fibre with a core refractive index of 1.54 and a cladding refractive index of 1.50 when the fibre is inside water of refractive index 1.33. (4)
 (14x5=70)

Syllabus

ENGINEERING PHYSICS A (FOR CIRCUIT BRANCHES)

Module 1

Oscillations and Waves

Harmonic oscillations, Damped harmonic motion-Derivation of differential equation and its solution, Over damped, Critically damped and Under damped Cases, Quality factor-Expression, Forced oscillations-Differential Equation-Derivation of expressions for amplitude and phase of forced oscillations, Amplitude Resonance-Expression for Resonant frequency, Quality factor and Sharpness of Resonance, Electrical analogy of mechanical oscillators

Wave motion- Derivation of one dimensional wave equation and its solution, Three dimensional wave equation and its solution (no derivation), Distinction between transverse and longitudinal waves, Transverse vibration in a stretched string, Statement of laws of vibration

Module 2

Wave Optics

Interference of light-Principle of superposition of waves, Theory of thin films - Cosine law (Reflected system), Derivation of the conditions of constructive and destructive Interference, Interference due to wedge shaped films -Determination of thickness and test for optical planeness, Newton's rings - Measurement of wavelength and refractive index, Antireflection coatings

Diffraction of light, Fresnel and Fraunhofer classes of diffraction, Diffraction grating-Grating equation, Rayleigh criterion for limit of resolution, Resolving and Dispersive power of a grating with expression (no derivation)

Module 3

Quantum Mechanics & Nanotechnology

Introduction for the need of Quantum mechanics, Wave nature of Particles, Uncertainty principle, Applications-Absence of electrons inside a nucleus and Natural line broadening mechanism, Formulation of time dependent and independent Schrodinger wave equations-Physical meaning of wave function, Particle in a one dimensional box- Derivation for normalised wave function and energy eigen values, Quantum Mechanical Tunnelling (Qualitative)

Introduction to nanoscience and technology, Increase in surface to volume ratio for nanomaterials, Quantum confinement in one dimension, two dimension and three dimension-Nano sheets, Nano wires and Quantum dots, Properties of nanomaterials-mechanical, electrical and optical, Applications of nanotechnology (qualitative ideas)

Module 4

Magnetism & Electro Magnetic Theory

Magnetic field and Magnetic flux density, Gauss's law for Magnetic flux density, Ampere's Circuital law, Faraday's law in terms of EMF produced by changing magnetic flux, Magnetic permeability and susceptibility, Classification of magnetic materials-para, dia and ferromagnetic materials

Fundamentals of vector calculus, concept of divergence, gradient and curl along with physical significance, Line, Surface and Volume integrals, Gauss divergence theorem & Stokes' theorem, Equation of continuity, Derivation of Maxwell's equations in vacuum, Comparison of displacement current with conduction current. Electromagnetic waves, Velocity of Electromagnetic waves in free space, Flow of energy and Poynting's vector (no derivation)

Module 5

Superconductivity & Photonics

Superconducting phenomena, Meissner effect and perfect diamagnetism, Types of superconductors-Type I and Type II, BCS Theory (Qualitative), High temperature superconductors-Applications of super conductivity

a contract to the second

Introduction to photonics-Photonic devices-Light Emitting Diode, Photo detectors -Junction and PIN photodiodes, Solar cells-I-V Characteristics, Optic fibre-Principle of propagation of light, Types of fibres-Step index and Graded index fibres, Numerical aperture –Derivation, Fibre optic communication system (block diagram), Industrial, Medical and Technological applications of optical fibre, Fibre optic sensors-Intensity Modulated and Phase modulated sensors.

Text Books

- 1. M.N.Avadhanulu, P.G.Kshirsagar, TVS Arun Murthy "A Text book of Engineering Physics", S.Chand & Co., Revised Edition 2019
- 2. H.K.Malik , A.K. Singh, "Engineering Physics" McGraw Hill Education, Second Edition 2017

Reference Books

- 1. Arthur Beiser, "Concepts of Modern Physics ", Tata McGraw Hill Publications, 6th Edition 2003
- 2. D.K. Bhattacharya, Poonam Tandon, "Engineering Physics", Oxford University Press, 2015
- 3. Md.N.Khan & S.Panigrahi "Principles of Engineering Physics 1&2", Cambridge University Press, 2016
- 4. Aruldhas G., "Engineering Physics", PHI Pvt. Ltd., 2015
- 5. Ajoy Ghatak, "Optics", Mc Graw Hill Education, Sixth Edition, 2017
- 6. T. Pradeep, "Nano:The Essentials", McGraw Hill India Ltd, 2007
- 7. Halliday, Resnick, Walker, "Fundamentals of Physics", John Wiley & Sons.Inc, 2001
- David J Griffiths, "Introduction to Electrodynamics", Addison-Wesley publishing, 3rd Edition, 1999
- 9. Premlet B., "Advanced Engineering Physics", Phasor Books,10th edition,2017
- I. Dominic and. A. Nahari, "A Text Book of Engineering physics", Owl Books Publishers, Revised edition, 2016

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures			
1	Oscillations and Waves (9 hours)				
1.1	Harmonic oscillations, Damped harmonic motion-Derivation of differential equation and its solution, Over damped, Critically damped and Under damped Cases, Quality factor-Expression	2 hrs			
1.2	Forced oscillations-Differential Equation-Derivation of expressions for amplitude and phase of forced oscillations, Amplitude Resonance- Expression for Resonant frequency, Quality factor and Sharpness of Resonance, Electrical analogy of mechanical oscillators	3hrs			
1.3	Wave motion- Derivation of one dimensional wave equation and its solution, Three dimensional wave equation and its solution (no derivation)	2 hrs			
1.4	4 Distinction between transverse and longitudinal waves. Transverse vibration in a stretched string, Statement of laws of vibration				
2	Wave Optics (9 hours)				
2.1	Interference of light-Principle of superposition of waves, Theory of thin films - Cosine law (Reflected system), Derivation of the conditions of constructive and destructive Interference	2 hrs			
2.2	Interference due to wedge shaped films -Determination of thickness and test for optical planeness, Newton's rings - Measurement of wavelength and refractive index, Antireflection coatings	4 hr			
2.3	Diffraction of light, Fresnel and Fraunhofer classes of diffraction, Diffraction grating-Grating equation	2 hrs			
2.4	Rayleigh criterion for limit of resolution, Resolving and Dispersive power of a grating with expression (no derivation)	1 hr			
3	Quantum Mechanics & Nanotechnology (9hours)				
3.1	Introduction for the need of Quantum mechanics, Wave nature of Particles, Uncertainty principle, Applications-Absence of electrons inside a nucleus and Natural line broadening mechanism	2 hrs			
3.2	Formulation of time dependent and independent Schrodinger wave equations-Physical Meaning of wave function, Particle in a one dimensional box- Derivation for normalised wave function and energy eigen values, Quantum Mechanical Tunnelling (Qualitative)	4 hrs			
3.3	Introduction to nanoscience and technology, Increase in surface to volume ratio for nanomaterials, Quantum confinement in one dimension, two dimension and three dimension-Nano sheets, Nano wires and Quantum dots	2 hrs			
3.4	Properties of nanomaterials-mechanical, electrical and optical Applications of nanotechnology (qualitative ideas)	1 hr			
4	Magnetism & Electro Magnetic Theory (9 hours)				
4.1	Magnetic field and Magnetic flux density, Gauss's law for Magnetic flux	2 hrs			

	density, Ampere's Circuital law, Faraday's law in terms of EMF produced by changing magnetic flux		
4.2	Explanation for Magnetic permeability and susceptibility Classification		1 hr
	of magnetic materials- para, dia and ferromagnetic materials		
4.3	Fundamentals of vector calculus, concept of divergence, gradient and		2 hrs
	curl along with physical significance, Line, Surface and Volume integrals,		
	Gauss divergence theorem & Stokes' theorem		
4.4	Equation of continuity, Derivation of Maxwell's equations in vacuum,	1	4 hrs
	Comparison of displacement current with conduction current.		
	Electromagnetic waves, Velocity of Electromagnetic waves in free		
	space, Flow of energy and Poynting's vector (no derivation)		
5	Superconductivity & Photonics (9hours)		
5.1	Super conducting Phenomena, Meissner effect and perfect		2 hrs
	diamagnetism, Types of superconductors-Type I and Type II		
5.2	BCS Theory (Qualitative), High temperature superconductors,		2 hrs
	Applications of super conductivity		
5.3	Introduction to photonics-Photonic devices-Light Emitting Diode, Photo		2 hrs
	detectors -Junction and PIN photodiodes, Solar cells-I-V Characteristics		
5.4	Optic fibre-Principle of propagation of light, Types of fibres-Step index		3 hrs
	and Graded index fibres, Numerical aperture –Derivation, Fibre optic		
	communication system (block diagram), Industrial, Medical and		
	Technological applications of optical fibre, Fibre optic sensors-Intensity		
	Modulated and Phase modulated sensors		

EST	ENGINEERING	CATEGORY	LTP		Ρ	CREDIT	Year of Introduction	
110	GRAPHICS	ESC	2	0	2	3	2019	

Preamble: To enable the student to effectively perform technical communication through graphical representation as per global standards.

Prerequisite: NIL

Course Outcomes: After the completion of the course the student will be able to

CO 1	Draw the projection of points and lines located in different quadrants									
CO 2	Prepare multiview orthographic projections of objects by visualizing them in different									
	positions									
CO 3	Draw sectional views and develop surfaces of a given object									
CO 4	Prepare pictorial drawings using the principles of isometric and perspective projections to									
	visualize objects in three dimensions.									
CO 5	Convert 3D views to orthographic views									
CO 6	Obtain multiview projections and solid models of objects using CAD tools									

Mapping of course outcomes with program outcomes

\square	PO	РО	PO	РО	РО	РО	РО	РО	РО	PO	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3											
CO 2	3								14			
CO 3	3	1	100					-	<u></u>			
CO 4	3									1		
CO 5	3									2		
CO 6	3				3					3		

Assessment Pattern

	Continuous Ass	sessment Tests	
Bloom's Category	Test 1 (15 Marks)	Test 2 (15 Marks)	End Semester Examination (100 Marks)
Remember			
Understand	5		20
Apply	10	10	80
Analyse			
Evaluate			
Create			

Mark distribution

Total Marks	CIE (Marks)	ESE (Marks)	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks

CIA for section A carries 25 marks (15 marks for 1 test and Class work 10 marks) CIA for section B carries 15 marks (10 marks for 1 test and Class work 5 marks)

End Semester Examination Pattern:

ESE will be of 3 hour duration on A4 size answer booklet and will be for 100 marks. The question paper shall contain two questions from each module of Section A only. Student has to answer any one question from each module. Each question carries 20 marks.

Course Level Assessment Questions

(Questions may be framed based on the outline given under each course outcome)

Course Outcome 1 (CO1):

- 1. Locate points in different quadrants as per given conditions.
- 2. Problems on lines inclined to both planes .
- 3. Find True length, Inclinations and Traces of lines.

Course Outcome 2 (CO2)

- 1. Draw orthographic views of solids and combination solids
- 2. Draw views of solids inclined to any one reference plane.
- 3. Draw views of solids inclined to both reference planes.

Course Outcome 3 (CO3):

- 1. Draw views of solids sectioned by a cutting plane
- 2. Find location and inclination of cutting plane given true shape of the section
- 3. Draw development of lateral surface of solids and also its sectioned views

Course Outcome 4 (CO4):

- 1. Draw Isometric views/projections of soilds
- 2. Draw Isometric views/projections of combination of soilds
- 3. Draw Perspective views of Soilds

Course Outcome 5 (CO5):

1. Draw Orthographic views of solids from given three dimensional view

Course Outcome 6 (CO6):

- 1. Draw the given figure including dimensions using 2D software
- 2. Create 3D model using modelling software from the given orthographic views or 3D figure or from real 3D objects

Model Question paper
QP CODE: PAGES:3
Reg No:
Name :
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION,
MONTH & YEAR
Course Code: EST 110
ENGINEERING GRAPHICS
Max.Marks:100 Duration: 3 Hours
PART A
Answer all Questions. Each question carries 3 Marks
Instructions: Retain necessary Construction lines
Show necessary dimensions
Answer any ONE question from each module

Each question carries 20 marks

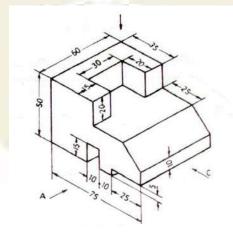
MODULE I

- The end point A of a line is 20mm above HP and 10mm in front of VP. The other end of the line is 50mm above HP and 15mm behind VP. The distance between the end projectors is 70mm. Draw the projections of the line. Find the true length and true inclinations of the line with the principal planes. Also locate the traces of the line.
- 2. One end of a line is 20mm from both the principal planes of projection. The other end of the line is 50mm above HP and 40mm in front of VP. The true length of the line is 70mm. Draw the projections of the line. Find its apparent inclinations, elevation length and plan length. Also locate its traces.

MODULE II

 A pentagonal pyramid of base side 25mm and height 40mm, is resting on the ground on one of its triangular faces. The base edge of that face is inclined 30° to VP. Draw the projections of the solid. 4. A hexagonal prism has side 25mm and height 50mm has a corner of its base on the ground and the long edge containing that corner inclined at 30° to HP and 45° to VP. Draw the projections of the solid.

MODULE III


- 5. A triangular prism of base side 40mm and height 70mm is resting with its base on the ground and having an edge of the base perpendicular to VP. Section the solid such that the true shape of the section is a trapezium of parallel sides 30mm and 10mm. Draw the projections showing the true shape. Find the inclination of the cutting plane with the ground plane.
- 6. Draw the development of a pentagonal pyramid of base side 30mm and height 50mm. A string is wound from a corner of the base round the pyramid and back to the same point through the shortest distance. Show the position of the string in the elevation and plan.

MODULE IV

- The frustum of a cone has base diameter 50mm and top diameter 40mm has a height of 60mm. It is paced centrally on top of a rectangular slab of size 80x60mm and of thickness 20mm. Draw the isometric view of the combination.
- 8. A hexagonal prism has base side 35mm and height 60mm. A sphere of diameter 40mm is placed centrally on top of it. Draw the isometric projection of the combination.

MODULE V

- 9. Draw the perspective view of a pentagonal prism, 20mm side and 45mm long lying on one of its rectangular faces on the ground and having its axis perpendicular to picture plane. One of its pentagonal faces touches the picture plane and the station point is 50mm in front of PP, 25mm above the ground plane and lies in a central plane, which is 70mm to the left of the center of the prism.
- 10. Draw three orthographic views with dimensions of the object shown in figure below.

(20X5=100)

SCHEME OF VALUATION 1. Locating the points and drawing the projections of the line – 4 marks Finding true length by any one method – 6 marks Finding true inclination with VP - 2 marks Finding true inclination with HP - 2 marks Locating horizontal trace – 2 marks Locating vertical trace – 2 marks Dimensioning and neatness – 2 marks Total = 20 marks 2. Locating the points and drawing true length of the line – 4 marks Finding projections by any method – 6 marks Finding length of elevation and plan – 2 marks Finding apparent inclinations – 2 marks Locating horizontal trace – 2 marks Locating vertical trace – 2 marks Dimensioning and neatness – 2 marks Total = 20 marks 3. Drawing initial position plan and elevation – 4 marks First inclination views – 4 marks Second inclination views -8 marks Marking invisible edges – 2 marks Dimensioning and neatness – 2 marks Total = 20 marks (Any one method or combination of methods for solving can be used. If initial position is wrong then maximum 50% marks may be allotted for the answer) 4. Drawing initial position plan and elevation – 4 marks First inclination views – 4 marks Second inclination views -8 marks

Total = 20 marks

(Any one method or combination of methods for solving can be used If initial position is wrong then maximum 50% marks may be allotted for the answer)

 Drawing initial position plan and elevation – 4 marks Locating section plane as per given condition – 5 marks Drawing true shape -5 marks
 Finding inclination of cutting plane – 2 marks
 Dimensioning and neatness – 2 marks

Marking invisible edges – 2 marks Dimensioning and neatness – 2 marks

Total = 20 marks

 Drawing initial position plan and elevation – 4 marks Development of the pyramid – 6 marks Locating string in development -2 marks Locating string in elevation – 3 marks Locating string in plan – 3 marks Dimensioning and neatness – 2 marks

7. Drawing initial positions – 4 marks
Isometric View of Slab -6 marks
Isometric View of Frustum – 10 marks
Dimensioning and neatness – 2 marks

(Initial position is optional, hence redistribute if needed. Reduce 4 marks if Isometric scale is taken)

 Drawing initial positions – 4 marks Isometric scale – 4 marks Isometric projection of prism -5 marks Isometric projection of sphere – 5 marks Dimensioning and neatness – 2 marks

(Initial position is optional, hence redistribute if needed.

- Drawing the planes and locating the station point 4 marks Locating elevation points – 2 marks Locating plan points – 2 marks Drawing the perspective view – 10 marks Dimensioning and neatness – 2 marks
- 10. Drawing the elevation 8marks
 Drawing the plan 4 marks
 Drawing the side view 4 marks
 Marking invisible edges 2 marks
 Dimensioning and neatness 2 marks

Total = 20 marks

SYLLABUS

General Instructions:

- First angle projection to be followed
- > Section A practice problems to be performed on A4 size sheets
- Section B classes to be conducted on CAD lab

SECTION A

Module 1

Introduction : Relevance of technical drawing in engineering field. Types of lines, Dimensioning, BIS code of practice for technical drawing.

Orthographic projection of Points and Lines: Projection of points in different quadrants, Projection of straight lines inclined to one plane and inclined to both planes. Trace of line. Inclination of lines with reference planes True length of line inclined to both the reference planes.

Module 2

Orthographic projection of Solids: Projection of Simple solids such as Triangular, Rectangle, Square, Pentagonal and Hexagonal Prisms, Pyramids, Cone and Cylinder. Projection of solids in simple position including profile view. Projection of solids with axis inclined to one of the reference planes and with axis inclined to both reference planes.

Module 3

Sections of Solids: Sections of Prisms, Pyramids, Cone, Cylinder with axis in vertical position and cut by different section planes. True shape of the sections. Also locating the section plane when the true shape of the section is given.

Development of Surfaces: Development of surfaces of the above solids and solids cut by different section planes. Also finding the shortest distance between two points on the surface.

Module 4

Isometric Projection: Isometric View and Projections of Prisms, Pyramids, Cone, Cylinder, Frustum of Pyramid, Frustum of Cone, Sphere, Hemisphere and their combinations.

Module 5

Perspective Projection: Perspective projection of Prisms and Pyramids with axis perpendicular to the ground plane, axis perpendicular to picture plane.

Conversion of Pictorial Views: Conversion of pictorial views into orthographic views.

SECTION B

(To be conducted in CAD Lab)

Introduction to Computer Aided Drawing: Role of CAD in design and development of new products, Advantages of CAD. Creating two dimensional drawing with dimensions using suitable software. (Minimum 2 exercises mandatory)

Introduction to Solid Modelling: Creating 3D models of various components using suitable modelling software. (Minimum 2 exercises mandatory)

Text Books

- 1. Bhatt, N.D., Engineering Drawing, Charotar Publishing House Pvt. Ltd.
- 2. John, K.C. Engineering Graphics, Prentice Hall India Publishers.

Reference Books

- 1. Anilkumar, K.N., Engineering Graphics, Adhyuth narayan Publishers
- 2. Agrawal, B. And Agrawal, C.M., Engineering Darwing, Tata McGraw Hill Publishers.
- 3. Benjamin, J., Engineering Graphics, Pentex Publishers- 3rd Edition, 2017
- 4. Duff, J.M. and Ross, W.A., Engineering Design and Visualisation, Cengage Learning.
- 5. Kulkarni, D.M., Rastogi, A.P. and Sarkar, A.K., Engineering Graphics with AutoCAD, PHI.
- 6. Luzaddff, W.J. and Duff, J.M., Fundamentals of Engineering Drawing, PHI.
- 7. Varghese, P.I., Engineering Graphics, V I P Publishers
- 8. Venugopal, K., Engineering Drawing and Graphics, New Age International Publishers.

Course Contents and Lecture Schedule

No	SECTION A	No. of Hours
1	MODULE I	
1.1	Introduction to graphics, types of lines, Dimensioning	1
1.2	Concept of principle planes of projection, different quadrants, locating points on different quadrants	2
1.3	Projection of lines, inclined to one plane. Lines inclined to both planes, trapezoid method of solving problems on lines.	2
1.4	Problems on lines using trapezoid method	2
1.5	Line rotation method of solving, problems on line rotation method	2
2	MODULE II	
2.1	Introduction of different solids, Simple position plan and elevation of solids	2
2.2	Problems on views of solids inclined to one plane	2
2.3	Problems on views of solids inclined to both planes	2
2.4	Practice problems on solids inclined to both planes	2

3	MODULE III						
3.1	Introduction to section planes. AIP and AVP. Principle of locating cutting points and finding true shape	2					
3.2	Problems on sections of different solids	2					
3.3	Problems when the true shape is given	2					
3.4	Principle of development of solids, sectioned solids						
4	MODULE IV						
4.1	Principle of Isometric View and Projection, Isometric Scale. Problems on simple solids	2					
4.2	Isometric problems on Frustum of solids, Sphere and Hemisphere	2					
4.3	Problems on combination of different solids	2					
5	MODULE V						
5.1	Introduction to perspective projection, different planes, station point etc. Perspective problems on pyramids	2					
5.2	Perspective problems on prisms	2					
5.3	Practice on conversion of pictorial views into orthographic views	2					
	SECTION B (To be conducted in CAD lab)						
1	Introduction to CAD and software. Familiarising features of 2D software. Practice on making 2D drawings	2					
2	Practice session on 2D drafting	2					
3	Introduction to solid modelling and software	2					
4	Practice session on 3D modelling	2					

	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	CATEGORY	L	Т	Р	CREDIT	YEAR OF
l			ESC	4	0	0	4	2019

Preamble:

Objective of this course is to provide an insight and inculcate the essentials of Civil Engineering discipline to the students of all branches of Engineering and to provide the students an illustration of the significance of the Civil Engineering Profession in satisfying the societal needs.

To introduce the students to the basic principles of mechanical engineering

Prerequisite: NIL

Course Outcomes: After completion of the course, the student will be able to

CO 1	Recall the role of civil engineer in society and to relate the various disciplines of Civil Engineering.
CO 2	Explain different types of buildings, building components, building materials and building construction
CO 3	Describe the importance, objectives and principles of surveying.
CO 4	Summarise the basic infrastructure services MEP, HVAC, elevators, escalators and ramps
CO 5	Discuss the Materials, energy systems, water management and environment for green buildings.
CO 6	Analyse thermodynamic cycles and calculate its efficiency
CO 7	Illustrate the working and features of IC Engines
CO 8	Explain the basic principles of Refrigeration and Air Conditioning
CO 9	Describe the working of hydraulic machines
CO 10	Explain the working of power transmission elements
CO 11	Describe the basic manufacturing, metal joining and machining processes

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО	РО	РО
										10	11	12
C01	3	-	-	-	-	3	2	2	-	-	-	-
CO2	3	2	-	1	3	-	-	3	-	-	-	-
CO3	3	2	-	-	3	-	-	-	2	-	-	-

CO4	3	2	-	-	3	-	-	-	2	-	-	-
CO5	3	2	-	-	3	2	3	-	2	-	-	-
CO6	3	2										
CO7	3	1										
CO8	3	1										
CO9	3	2	19	2 F.			1	GA.	L A	24		
CO10	3	1			26	11	1754	211	12	11		
CO11	3	1.					5		3			

Assessment Pattern

	Bas	sic Civil Engine	ering	Basic Mechanical Engineering			
Bloom's Category	Continuous Assessment		End Semester Examination	Continu Assessr		End Semester Examination (marks)	
	Test 1	Test 2	(marks)	Test 1	Test 2		
	marks	marks	The second second	marks	marks		
Remember	5	5	10	7.5	7.5	15	
Understand	20	20	40	12.5	12.5	25	
Apply				5	5	10	
Analyse							
Evaluate		-					
Create							

Mark distribution

Total Marks	CIE (Marks)	ESE (Marks)	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern:

There will be two parts; Part I – Basic Civil Engineering and Part II – Basic Mechanical Engineering. Part I and PART II carries 50 marks each. For the end semester examination, part I contain 2 parts - Part A and Part B. Part A contain 5 questions carrying 4 marks each (not exceeding 2 questions from each module). Part B contains 2 questions from each module out of which one to be answered. Each question carries 10 mark and can have maximum 2 sub-divisions. The pattern for end semester examination for part II is same as that of part I. However, student should answer both part I and part 2 in separate answer booklets.

Course Level Assessment Questions:

Course Outcome CO1: To recall the role of civil engineer in society and to relate the various disciplines of Civil Engineering.

1.Explain relevance of Civil engineering in the overall infrastructural development of the country. Course outcome 2 (CO2) (One question from each module and not more than two)

Explain different types of buildings, building components, building materials and building construction

1. Discuss the difference between plinth area and carpet area.

Course outcome 3 (CO3) (One question from each module and not more than two)

Describe the importance, objectives and principles of surveying.

1. Explain the importance of surveying in Civil Engineering

Course outcome 4 (CO4) (One question from each module and not more than two)

Summarise the basic infrastructure services MEP, HVAC, elevators, escalators and ramps

1. Explain the civil engineering aspects of elevators, escalators and ramps in buildings

Course outcome 5 (CO5) (One question from each module and not more than two)

Discuss the Materials, energy systems, water management and environment for green buildings.

1. Discuss the relevance of Green building in society

<u>Section II</u> Answer any 1 full question from each module. Each full question carries 10 marks

Course Outcome 1 (CO1) (Two full question from each module and each question can have maximum 2 sub-divisions)

To recall the role of civil engineer in society and to relate the various disciplines of Civil Engineering <u>CO Questions</u>

- **1.** a List out the types of building as per occupancy. Explain any two, each in about five sentences.**b.** Discuss the components of a building with a neat figure.
- **2. a.**What are the major disciplines of civil engineering and explain their role in the infrastructural framework.

b. Explain the role of NBC, KBR & CRZ norms in building rules and regulations prevailing in our country.

Course Outcome 2 (CO2) & Course Outcome 3 (CO3) (Two full question from each module and each question can have maximum 2 sub-divisions)

Explain different types of buildings, building components, building materials and building construction & Describe the importance, objectives and principles of surveying.

CO Questions

- a. What are the different kinds of cement available and what is their use.
 b. List the properties of good building bricks. Explain any five.
- 2. a. List and explain any five modern construction materials used for construction.
 - **b.** Explain the objectives and principles of surveying

Course outcome 4 (CO4) & Course outcome 5 (CO5) (Two full question from each module and each question can have maximum 2 sub-divisions)

Summarise the basic infrastructure services MEP, HVAC, elevators, escalators and ramps & Discuss the Materials, energy systems, water management and environment for green buildings.

CO Questions

- a. Draw the elevation and plan of one brick thick wall with English bond
 b. Explain the energy systems and water management in Green buildings
- 2. a. Draw neat sketch of the following foundations: (i) Isolated stepped footing;
 (ii) Cantilever footing; and (iii) Continuous footing.
 - b. Discuss the civil engineering aspect of MEP and HVAC in a commercial building

Course Outcome 6 (CO6):

- 1. In an air standard Otto cycle the compression ratio is 7 and compression begins at 35°C, 0.1 MPa. The maximum temperature of the cycle is 1100°C. Find
- i) Heat supplied per kg of air,
- ii) Work done per kg of air,
- iii) Cycle efficiency

Take Cp = 1.005 kJ/kgK and Cv=0.718 kJ/kgK

- A Carnot cycle works with adiabatic compression ratio of 5 and isothermal expansion ratio of 2. The volume of air at the beginning of isothermal expansion is 0.3 m³. If the maximum temperature and pressure is limited to 550K and 21 bar, determine the minimum temperature in the cycle and efficiency of the cycle.
- In an ideal diesel cycle, the temperature at the beginning and end of compression is 65°C and 620°C respectively. The temperature at the beginning and end of the expansion is 1850°C and 850°C. Determine the ideal efficiency of the cycle.

4. Explain the concepts of CRDI and MPFI in IC Engines.

Course Outcome 7 (CO7)

- 1. With the help of a neat sketch explain the working of a 4 stroke SI engine
- 2. Compare the working of 2 stroke and 4 stroke IC engines
- 3. Explain the classification of IC Engines.

Course Outcome 8(CO8):

- 1. Explain the working of vapour compression refrigeration system.
- 2. With the help of suitable sketch explain the working of a split air conditioner.
- 3. Define: COP, specific humidity, relative humidity and dew point temperature.

Course Outcome 9 (CO9):

1. Explain the working of a single stage centrifugal pump with sketches.

- 2. With the help of a neat sketch, explain the working of a reciprocating pump.
- 3. A turbine is to operate under a head of 25 m at 200 rpm. The discharge is 9 m^3/s . If the overall
- efficiency of the turbine is 90%. Determine the power developed by the turbine.

Course Outcome 10 (CO10):

- 1. Explain the working of belt drive and gear drive with the help of neat sketches
- 2. Explain a single plate clutch.
- 3. Sketch different types of gear trains and explain.

Course Outcome 11 (CO11):

1. Describe the operations which can be performed using drilling machine.

- 2. Explain the functions of runners and risers used in casting.
- 3. With a neat sketch, explain the working and parts of a lathe.

Model Question Paper

QP CODE: EST120

Reg No:_

Name:

page:3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: EST 120

Course Name: BASICS OF CIVIL AND MECHANICAL ENGINEERING

Max. Marks: 100

Duration: 3 hours

Answer both part I and part 2 in separate answer booklets

PART I: BASIC CIVIL ENGINEERING

PART A

(Answer all questions. Each question carries 4 marks)

- 1. Explain relevance of Civil engineering in the overall infrastructural development of the country.
- 2. Discuss the difference between plinth area and carpet area.
- 3. Explain different types of steel with their properties.
- 4. What are the different kinds of cement available and what is their use?
- 5. Define bearing capacity of soil.

(5 x 4 = 20)

Part B

Answer one full question from each module.

MODULE I

6a.	List out the types of building as per occupancy. Explain any two, each in about	five			
	sentences.	(5)			
b.	Discuss the components of a building with a neat figure.	(5)			
	OR				
7a.	What are the major disciplines of civil engineering and explain their role in	the			
	infrastructural framework.	(5)			
b.	Explain the role of NBC, KBR & CRZ norms in building rules and regulations prevailing in	our			
	country.	(5)			
MODULE II					

8a. What are the different kinds of cement available and what is their use. (5) b. List the properties of good building bricks. Explain any five. (5) OR 9a. List and explain any five modern construction materials used for construction. (5) b. Explain the objectives and principles of surveying (5)

MODULE III

10a.	Draw the elevation and plan of one brick thick wall with English bond	(5)
b.	Explain the energy systems and water management in Green buildings	(5)
	OR	
11a .	Draw neat sketch of the following foundations: (i) Isolated stepped footing; (ii) Cantilever footing; and (iii) Continuous footing.	(5)
b.	Discuss the civil engineering aspect of MEP and HVAC in a commercial building	(5)

[10 x 3 = 30]

PART II: BASIC MECHANICAL ENGINEERING

PART A

Answer all questions. Each question carries 4 marks

- 1. Sketch the P-v and T-s diagram of a Carnot cycle and List the processes.
- 2. Illustrate the working of an epicyclic gear train.
- 3. Explain cooling and dehumidification processes.
- 4. Differentiate between soldering and brazing.
- 5. Explain the principle of Additive manufacturing.

4 x 5 = 20 marks

Part B

Answer one full question from each module.

MODULE I

6.	In an air standard Otto cycle the compression ratio is 7 and compression 0.1MPa. The maximum temperature of the cycle is 1100°C. Find i) Heat supplied per kg of air, ii) Work done per kg of air, iii) Cycle efficiency	begins at 35°C,		
	Take C _p = 1.005 kJ/kgK and C _v =0.718 kJ/kgK OR	10 marks		
7.	a) Explain the working of a 4 stroke SI engine with neat sketches. b) Explain the fuel system of a petrol engine.	7 marks 3 marks		
MODULE II				
8.	 a) Explain the working of a vapour compression system with help of a block diagram. b) Define: Specific humidity, relative humidity and dew point temperature. 	7 marks 3 marks		
9.	With the help of a neat sketch, explain the working of a centrifugal pump.	10 marks		
MODULE III				
10.	. Explain the two high, th <mark>ree high, four high and cluster rolling</mark> mills with neat sketches.	10 marks		
11.	a) Describe the arc welding process with a neat sketch. b) Differentiate between up-milling and down-milling operations.	6 marks 4 marks		

SYLLABUS

Module 1

General Introduction to Civil Engineering: Relevance of Civil Engineering in the overall infrastructural development of the country. Responsibility of an engineer in ensuring the safety of built environment. Brief introduction to major disciplines of Civil Engineering like Transportation Engineering, Structural Engineering, Geo-technical Engineering, Water Resources Engineering and Environmental Engineering.

Introduction to buildings: Types of buildings, selection of site for buildings, components of a residential building and their functions.

Building rules and regulations: Relevance of NBC, KBR & CRZ norms (brief discussion only).

Building area: Plinth area, built up area, floor area, carpet area and floor area ratio for a building as per KBR.

Module 2

Surveying: Importance, objectives and principles.

Construction materials, Conventional construction materials: types, properties and uses of building materials: bricks, stones, cement, sand and timber

Cement concrete: Constituent materials, properties and types.

Steel: Steel sections and steel reinforcements, types and uses.

Modern construction materials:- Architectural glass, ceramics, Plastics, composite materials, thermal and acoustic insulating materials, decorative panels, waterproofing materials. Modern uses of gypsum, pre-fabricated building components (brief discussion only).

Module 3

Building Construction: Foundations: Bearing capacity of soil (definition only), functions of foundations, types – shallow and deep (brief discussion only). Load bearing and framed structures (concept only).

Brick masonry: - Header and stretcher bond, English bond & Flemish bond random rubble masonry. **Roofs and floors:** - Functions, types; flooring materials (brief discussion only).

Basic infrastructure services: MEP, HVAC, elevators, escalators and ramps (Civil Engineering aspects only), fire safety for buildings.

Green buildings:- Materials, energy systems, water management and environment for green buildings. (brief discussion only).

Module 4

Analysis of thermodynamic cycles: Carnot, Otto, Diesel cycles, Derivation of efficiency of these cycles, Problems to calculate heat added, heat rejected, net work and efficiency. IC Engines: CI, SI, 2-Stroke, 4-Stroke engines. Listing the parts of different types of IC Engines. Efficiencies of IC Engines(Definitions only), Air, Fuel, cooling and lubricating systems in SI and CI Engines, CRDI, MPFI. Concept of hybrid engines.

Module 5

Refrigeration: Unit of refrigeration, reversed Carnot cycle,COP, vapour compression cycle (only description and no problems); Definitions of dry, wet & dew point temperatures, specific humidity and relative humidity, Cooling and dehumidification, Layout of unit and central air conditioners.

Description about working with sketches of: Reciprocating pump, Centrifugal pump, Pelton turbine, Francis turbine and Kaplan turbine. Overall efficiency, Problems on calculation of input and output power of pumps and turbines (No velocity triangles)

Description about working with sketches of: Belt and Chain drives, Gear and Gear trains, Single plate clutches.

Module 6

Manufacturing Process: Basic description of the manufacturing processes – Sand Casting, Forging, Rolling, Extrusion and their applications.

Metal Joining Processes: List types of welding, Description with sketches of Arc Welding, Soldering and Brazing and their applications

Basic Machining operations: Turning, Drilling, Milling and Grinding.

Description about working with block diagram of: Lathe, Drilling machine, Milling machine, CNC Machine. Principle of CAD/CAM, Rapid and Additive manufacturing.

Text Books:

- 1. Rangwala, S. C., Essentials of Civil Engineering, Charotar Publishing House
- Mckay, W.B. and Mckay, J. K., Building Construction, Volumes 1 to 4, Pearson India Education Services

References Books:

- 1. Chen W.F and Liew J Y R (Eds), The Civil Engineering Handbook. II Edition CRC Press (Taylor and Francis)
- 2. Chudley, R and Greeno R, Building construction handbook, Addison Wesley, Longman group, England
- 3. Chudley, R, Construction Technology, Vol. I to IV, Longman group, England Course Plan
- 4. Kandya A A, Elements of Civil Engineering, Charotar Publishing house
- 5. Mamlouk, M. S., and Zaniewski, J. P., Materials for Civil and Construction Engineering, Pearson Publishers
- 6. Rangwala S.C and Dalal K B Building Construction Charotar Publishing house
- 7. Clifford, M., Simmons, K. and Shipway, P., An Introduction to Mechanical Engineering Part I -CRC Press
- 8. Roy and Choudhary, Elements of Mechanical Engineering, Media Promoters & Publishers Pvt. Ltd., Mumbai.
- 9. Sawhney, G. S., Fundamentals of Mechanical Engineering, PHI
- 10. G Shanmugam, M S Palanichamy, Basic Civil and Mechanical Engineering, McGraw Hill Education; First edition, 2018
- 11. Benjamin, J., Basic Mechanical Engineering, Pentex Books, 9th Edition, 2018
- 12. Balachandran, P.Basic Mechanical Engineering, Owl Books

Course Contents and Lecture Schedule:

No	Торіс	Course outcomes addressed	No. of Lectures
1	Module I		Total: 7
1.1	General Introduction to Civil Engineering: Relevance of Civil Engineering in the overall infrastructural development of the country. Responsibility of an engineer in ensuring the safety of built environment.	CO1	1
1.2	Brief introduction to major disciplines of Civil Engineering like Transportation Engineering, Structural Engineering, Geo-technical Engineering, Water Resources Engineering and Environmental Engineering.	CO1	2
1.3	<i>Introduction to buildings:</i> Types of buildings, selection of site for buildings, components of a residential building and their functions.	CO2	2
1.4	<i>Building rules and regulations:</i> Relevance of NBC, KBR & CRZ norms (brief discussion only)	CO2	1
1.5	<i>Building area:</i> Plinth area, built up area, floor area, carpet area and floor area ratio for a building as per KBR.	CO2	1
2	Module 2		Total: 7
2.1	Surveying: Importance, objectives and principles.	CO3	1
2.2	Bricks: - Classification, properties of good bricks, and tests on bricks	CO2	1
2.3	Stones: - <i>Qualities</i> of good stones, types of stones and their uses. Cement: - Good qualities of cement, types of cement and their uses.	CO2	1
2.4	Sand: - Classification, qualities of good sand and sieve analysis (basics only). Timber: - Characteristics, properties and uses.	CO2	1
2.5	Cement concrete: - Constituent materials, properties and types, Steel: - Steel sections and steel reinforcements, types and uses.	CO2	1

2.6	Modern construction materials: - Architectural glass, ceramics, plastics, composite materials, thermal and acoustic insulating materials, decorative panels, waterproofing materials, modern uses of gypsum, pre-fabricated building components (brief discussion only)								
3	Module 3								
3.1	Foundations: - Bearing capacity of soil (definition only), functions of foundations, types – shallow and deep (brief discussion only).CO2Brick masonry: - Header and stretcher bond, English bond & Flemish bond– elevation and plan (one & one and a half brick wall only).CO2Random rubble masonry.CO2	2							
3.2	Roofs: Functions, types; roofing materials (brief discussion only) Floors: Functions, types; flooring materials (brief discussion only)	2							
3.3	Basic infrastructure services: MEP, HVAC, Elevators, escalators and ramps (Civil Engineering aspects only) fire safety for buildings	2							
3.4	<i>Green buildings:</i> - Materials, energy systems, water management CO5 and environment for green buildings. (brief discussion only)	1							
4	MODULE 4	1							
4.1	Analysis of thermodynamic cycles: Carnot, Otto, and Diesel cycle- Derivation of efficiency of these cycles, Problems to calculate heat added, heat rejected, net work and efficiency								
4.2	IC Engines: CI, SI, 2-Stroke, 4-Stroke engines. Listing the parts of different types of IC Engines, efficiencies of IC Engines(Description only)								
4.3	Air, Fuel, cooling and lubricating systems in SI and CI Engines, CRDI,2MPFI. Concept of hybrid engines								
5	MODULE 5								
5.1	Refrigeration: Unit of refrigeration, reversed Carnot cycle, COP, vapour 1 compression cycle (only description and no problems) 1								
5.2	Definitions of dry, wet & dew point temperatures, specific humidity and relative humidity, Cooling and dehumidification, Layout of unit and central air conditioners. 1								

5.3	Description about working with sketches : Reciprocating pump, Centrifugal pump, Pelton turbine, Francis turbine and Kaplan turbine. Overall efficiency, Problems on calculation of input and output power of pumps and turbines (No velocity triangles)	4
5.4	Description about working with sketches of: Belt and Chain drives, Gear and Gear trains, Single plate clutches	3
6	MODULE 6	(A)
6.1	Manufacturing Process: Basic description of the manufacturing processes – Sand Casting, Forging, Rolling, Extrusion and their applications.	2
6.2	Metal Joining Processes :List types of welding, Description with sketches of Arc Welding, Soldering and Brazing, and their applications	1
6.3	Basic Machining operations: Turning, Drilling, Milling and Grinding Description about working with block diagrams of: Lathe, Drilling machine, Milling machine, CNC Machine	3
6.4	Principle of CAD/CAM, Rapid and Additive manufacturing	1

HUN	PROFESSIONAL COMMUNICATION	CATEGORY	L	Т	Ρ	CREDIT
102		MNC	2	0	2	

Preamble: Clear, precise, and effective communication has become a *sine qua non* in today's information-driven world given its interdependencies and seamless connectivity. Any aspiring professional cannot but master the key elements of such communication. The objective of this course is to equip students with the necessary skills to listen, read, write, and speak so as to comprehend and successfully convey any idea, technical or otherwise, as well as give them the necessary polish to become persuasive communicators.

Prerequisite: None

Course Outcomes: After the completion of the course the student will be able to

CO 1	Develop vocabulary and language skills relevant to engineering as a profession							
CO 2	Analyze, interpret and effectively summarize a variety of textual content							
CO 3	Create effective technical presentations							
CO 4	Discuss a given technical/non-technical topic in a group setting and arrive at							
	generalizations/consensus							
CO 5	Identify drawbacks in listening patterns and apply listening techniques for specific needs							
CO 6	Create professional and technical documents that are clear and adhering to all the							
	necessary conventions							

Mapping of course outcomes with program outcomes

\square	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	РО
						-				10	11	12
CO 1					1.1	C				3		2
CO 2					12	1.1.2				1		3
CO 3						1			1	3		
CO 4										3		1
CO 5		1				-			2	3		
CO 6	1					1			1	3		

Mark distribution

Total Marks	CIE	ESE	ESE Duration
100	50	50	2 hours

Continuous Internal Evaluation

Total N	/larks: 50		
Attend	ance		: 10 marks
Regula	r assessment		: 25 marks
Series	test (one test o	nly, should include verbal aptitude for placeme	nt and higher studies, this test
will be	conducted for 5	50 marks and reduced to 15)	: 15 marks
Regula	r assessment		
Project	report present	ation and Technical presentation through PPT	: 7.5 marks
Listeniı	ng Test	IN ADDRESS NO.	: 5 marks
Group	discussion/moc	k job interview	: 7.5 marks
Resum	e submission	이 것 🖂 이상에 전에 전 사람이다.	: 5 marks
Total N	mester Examina Aarks: 50, Time Level Assessmo	: 2 hrs.	
Course	Outcome 1 (CC	01):	
1.	List down the	ways in which gestures aff <mark>ect</mark> verbal communica	tion.
2.	Match the wo	rds and meanings	
	Ambiguous	promotion	
	Bona fide	referring to whole	
	Holistic	not clear	
	Exaltation	genuine	

3. Expand the following Compound Nouns - a. Water supply. b. Object recognition. c. Steam turbine

Course Outcome 2 (CO2)

1. Read the passage below and prepare notes:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty—a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as in poetry. What is best in mathematics deserves not merely to be learnt as a task, but to be assimilated as a part of daily thought, and brought again and again before the mind with everrenewed encouragement. Real life is, to most men, a long second-best, a perpetual compromise between the ideal and the possible; but the world of pure reason knows no compromise, no practical limitations, no barrier to the creative activity embodying in splendid edifices the passionate aspiration after the perfect from which all great work springs. Remote from human passions, remote even from the pitiful facts of nature, the generations have gradually created an ordered cosmos, where pure thought can dwell as in its natural home, and where one, at least, of our nobler impulses can escape from the dreary exile of the actual world.

So little, however, have mathematicians aimed at beauty, that hardly anything in their work has had this conscious purpose. Much, owing to irrepressible instincts, which were better than avowed

beliefs, has been moulded by an unconscious taste; but much also has been spoilt by false notions of what was fitting. The characteristic excellence of mathematics is only to be found where the reasoning is rigidly logical: the rules of logic are to mathematics what those of structure are to architecture. In the most beautiful work, a chain of argument is presented in which every link is important on its own account, in which there is an air of ease and lucidity throughout, and the premises achieve more than would have been thought possible, by means which appear natural and inevitable. Literature embodies what is general in particular circumstances whose universal significance shines through their individual dress; but mathematics endeavours to present whatever is most general in its purity, without any irrelevant trappings.

How should the teaching of mathematics be conducted so as to communicate to the learner as much as possible of this high ideal? Here experience must, in a great measure, be our guide; but some maxims may result from our consideration of the ultimate purpose to be achieved.

- From "On the teaching of mathematics" Bertrand Russell
- 2. Enumerate the advantages and disadvantages of speed reading. Discuss how it can impact comprehension.

Course Outcome 3(CO3):

- 1. What are the key elements of a successful presentation?
- 2. Elucidate the importance of non-verbal communication in making a presentation
- **3.** List out the key components in a technical presentation.

Course Outcome 4 (CO4):

- 1. Discuss: 'In today's world, being a good listener is more important than being a good Speaker.'
- 2. Listen to a video/live group discussion on a particular topic, and prepare a brief summary of the proceedings.
- 3. List the do's and don'ts in a group discussion.

Course Outcome 5 (CO5):

- 1. Watch a movie clip and write the subtitles for the dialogue.
- 2. What do you mean by barriers to effective listening? List ways to overcome each of these.
- **3.** What are the different types of interviews? How are listening skills particularly important in Skype/telephonic interviews?

Course Outcome 6 (CO6):

- **1.** Explain the basic structure of a technical report.
- You have been offered an internship in a much sought-after aerospace company and are very excited about it. However, the dates clash with your series tests. Write a letter to the Manager – University Relations of the company asking them if they can change the dates to coincide with your vacation.
- 3. You work in a well-reputed aerospace company as Manager University Relations. You are in charge of offering internships. A student has sent you a letter requesting you to change the dates allotted to him since he has series exams at that time. But there are no vacancies available during the period he has requested for. Compose an e-mail informing him of this and suggest that he try to arrange the matter with his college.

Syllabus

Module 1

Use of language in communication: Significance of technical communication Vocabulary Development: technical vocabulary, vocabulary used in formal letters/emails and reports, sequence words, misspelled words, compound words, finding suitable synonyms, paraphrasing, verbal analogies. Language Development: subject-verb agreement, personal passive voice, numerical adjectives, embedded sentences, clauses, conditionals, reported speech, active/passive voice.

Technology-based communication: Effective email messages, slide presentations, editing skills using software. Modern day research and study skills: search engines, repositories, forums such as Git Hub, Stack Exchange, OSS communities (MOOC, SWAYAM, NPTEL), and Quora; Plagiarism

Module 2

Reading, Comprehension, and Summarizing: Reading styles, speed, valuation, critical reading, reading and comprehending shorter and longer technical articles from journals, newspapers, identifying the various transitions in a text, SQ3R method, PQRST method, speed reading. Comprehension: techniques, understanding textbooks, marking and underlining, Note-taking: recognizing non-verbal cues.

Module 3

Oral Presentation: Voice modulation, tone, describing a process, Presentation Skills: Oral presentation and public speaking skills, business presentations, Preparation: organizing the material, self-Introduction, introducing the topic, answering questions, individual presentation practice, presenting visuals effectively.

Debate and Group Discussions: introduction to Group Discussion (GD), differences between GD and debate; participating GD, understanding GD, brainstorming the topic, questioning and clarifying, GD strategies, activities to improve GD skills

Module 4

Listening and Interview Skills Listening: Active and Passive listening, listening: for general content, to fill up information, intensive listening, for specific information, to answer, and to understand. Developing effective listening skills, barriers to effective listening, listening to longer technical talks, listening to classroom lectures, talks on engineering /technology, listening to documentaries and making notes, TED talks.

Interview Skills: types of interviews, successful interviews, interview etiquette, dress code, body language, telephone/online (skype) interviews, one-to-one interview & panel interview, FAQs related to job interviews

Module 5

Formal writing: Technical Writing: differences between technical and literary style. Letter Writing (formal, informal and semi formal), Job applications, Minute preparation, CV preparation (differences between Bio-Data, CV and Resume), and Reports. Elements of style, Common Errors in Writing: describing a process, use of sequence words, Statements of Purpose, Instructions, Checklists.

Analytical and issue-based Essays and Report Writing: basics of report writing; Referencing Style (IEEE Format), structure of a report; types of reports, references, bibliography.

Lab Activities

Written: Letter writing, CV writing, Attending a meeting and Minute Preparation, Vocabulary Building

Spoken: Phonetics, MMFS (Multimedia Feedback System), Mirroring, Elevator Pitch, telephone etiquette, qualities of a good presentation with emphasis on body language and use of visual aids. **Listening:** Exercises based on audio materials like radio and podcasts. Listening to Song. practice and exercises.

Reading: Speed Reading, Reading with the help of Audio Visual Aids, Reading Comprehension Skills **Mock interview and Debate/Group Discussion:** concepts, types, Do's and don'ts- intensive practice

Reference Books

- 1. English for Engineers and Technologists (Combined edition, Vol. 1 and 2), Orient Blackswan 2010.
- Meenakshi Raman and Sangeetha Sharma, "Technical Communication: Principles and Practice", 2nd Edition, Oxford University Press, 2011
- 3. Stephen E. Lucas, "The Art of Public Speaking", 10th Edition; McGraw Hill Education, 2012.
- 4. Ashraf Rizvi, "Effective Technical Communication", 2nd Edition, McGraw Hill Education, 2017.
- 5. William Strunk Jr. & E.B. White, "The Elements of Style", 4th Edition, Pearson, 1999.
- 6. David F. Beer and David McMurrey, Guide to writing as an Engineer, John Willey. New York, 2004.
- 7. Goodheart-Willcox, "Professional Communication", First Edition, 2017.
- Training in Interpersonal Skills: Tips for Managing People at Work, Pearson Education, India, 6 edition, 2015.
- 9. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success, Pearson Education; 1 edition, 2013.
- 10. Anand Ganguly, "Success in Interview", RPH, 5th Edition, 2016.
- 11. Raman Sharma, "Technical Communications", Oxford Publication, London, 2004.

EST 102	PROGRAMING IN C	CATEGORY	L	т	Ρ	CREDIT	YEAR OF
		ESC	2	1	2	4	2019

Preamble: The syllabus is prepared with the view of preparing the Engineering Graduates capable of writing readable C programs to solve computational problems that they may have to solve in their professional life. The course content is decided to cover the essential programming fundamentals which can be taught within the given slots in the curriculum. This course has got 2 Hours per week for practicing programming in C. A list showing 24 mandatory programming problems are given at the end. The instructor is supposed to give homework/assignments to write the listed programs in the rough record as and when the required theory part is covered in the class. The students are expected to come prepared with the required program written in the rough record for the lab classes.

Prerequisite: NIL

Course Outcomes: After the completion of the course the student will be able to

CO 1	Analyze a computational problem and develop an algorithm/flowchart to find its solution
CO 2	Develop readable* C programs with branching and looping statements, which uses Arithmetic, Logical, Relational or Bitwise operators.
CO 3	Write readable C programs with arrays, structure or union for storing the data to be processed
CO 4	Divide a given computational problem into a number of modules and develop a readable multi-function C program by using recursion if required, to find the solution to the computational problem
CO 5	Write readable C programs which use pointers for array processing and parameter passing
CO 6	Develop readable C programs with files for reading input and storing output
 Logic Stand Mean 	readability of a program means the following: used is easy to follow dards to be followed for indentation and formatting ningful names are given to variables ise comments are provided wherever needed

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	\bigcirc	Ø	Ø	Ø								\bigcirc
CO2	Ø	Ø	0	0	Ø							Ø
СОЗ	Ø	0	0	0	0	<u>it</u>	1	Ś				\oslash
CO4	Ø	Ø	0	0	0	1	E.	2			\bigcirc	Ø
CO5	0	0			0		-			0		Ø
CO6	Ø	Ø			\oslash							\oslash

Assessment Pattern

	Continuous As	End Semester		
Bloom's Category	Test 1 (Marks)	Test 2 (Marks)	Examination Marks	
Remember	15	10	25	
Understand	10	15	25	
Apply	20	20	40	
Analyse	5	5	10	
Evaluate			1	
Create	302	6 J.		

Mark distribution

Total Marks	CIE	ESE	ESE Duration
	Marks	Marks	
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test 1 (for theory, for 2 hrs)	: 20 marks
Continuous Assessment Test 2 (for lab, internal examination, for 2 hrs)	: 20 marks

Internal Examination Pattern: There will be two parts; Part A and Part B. Part A contains 5 questions with 2 questions from each module (2.5 modules x = 5), having 3 marks for each question. Students should answer all questions. Part B also contains 5 questions with 2 questions from each module (2.5 modules x = 5), of which a student should answer any one. The questions should not have subdivisions and each one carries 7 marks.

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Sample Course Level Assessment Questions

Course Outcome 1 (CO1): Write an algorithm to check whether largest of 3 natural numbers is prime or not. Also, draw a flowchart for solving the same problem.

Course Outcome 2 (CO2): Write an easy to read C program to process a set of n natural numbers and to find the largest even number and smallest odd number from the given set of numbers. The program should not use division and modulus operators.

Course Outcome 3(CO3): Write an easy to read C program to process the marks obtained by n students of a class and prepare their rank list based on the sum of the marks obtained. There are 3 subjects for which examinations are conducted and the third subject is an elective where a student is allowed to take any one of the two courses offered.

Course Outcome 4 (CO4): Write an easy to read C program to find the value of a mathematical function f which is defined as follows. f(n) = n! / (sum of factors of n), if n is not prime and f(n) = n! / (sum of digits of n), if n is prime.

Course Outcome 5 (CO5): Write an easy to read C program to sort a set of n integers and to find the number of unique numbers and the number of repeated numbers in the given set of numbers. Use a function which takes an integer array of n elements, sorts the array using the Bubble Sorting Technique and returns the number of unique numbers and the number of repeated numbers in the given array.

Course Outcome 6 (CO6): Write an easy to read C program to process a text file and to print the Palindrome words into an output file.

Model Question paper

QP CODE:	
Reg No:	
Name :	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION,

MONTH & YEAR

Course Code: EST 102

Course Name: Programming in C (Common to all programs)

Max.Marks:100

Duration: 3 Hours

PAGES:3

PART A

Answer all Questions. Each question carries 3 Marks

- 1. Write short note on processor and memory in a computer.
- 2. What are the differences between compiled and interpreted languages? Give example for each.
- 3. Write a C program to read a Natural Number through keyboard and to display the reverse of the given number. For example, if "3214567" is given as input, the output to be shown is "7654123".
- 4. Is it advisable to use *goto* statements in a C program? Justify your answer.
- 5. Explain the different ways in which you can *declare & initialize* a single dimensional array.
- 6. Write a C program to read a sentence through keyboard and to display the count of white spaces in the given sentence.
- 7. What are the advantages of using functions in a program?
- 8. With a simple example program, explain scope and life time of variables in C.
- 9. Write a function in C which takes the address of a single dimensional array (containing a finite sequence of numbers) and the number of numbers stored in the array as arguments and stores the numbers in the same array in reverse order. Use pointers to access the elements of the array.
- 10. With an example, explain the different modes of opening a file. (10x3=30)

Part B

Answer any one Question from each module. Each question carries 14 Marks

- 11. (a) Draw a flow chart to find the position of an element in a given sequence, using linear searching technique. With an example explain how the flowchart finds the position of a given element. (10)
 - (b) Write a pseudo code representing the flowchart for linear searching. (4)

12.	(a) With t	the help	ofa	flow	chart,	explain	the	bubble	sort	operation.	Illustrate	with	an
	example.											(1	.0)
	(b) Write a	an algori	thm r	epres	enting	the flow	char	t for bub	ble s	ort.		(4)

13. (a) Write a C program to read an English Alphabet through keyboard and display whether the given Alphabet is in upper case or lower case.
(b) Explain how one can use the builtin function in *C*, *scanf*to read values of different data types. Also explain using examples how one can use the builtin function in *C*, *printf*for text formatting.
(8)

OR

- 14. (a) With suitable examples, explain various operators in C.(10)(b) Explain how characters are stored and processed in C.(4)
- 15. (a) Write a function in C which takes a 2-Dimensional array storing a matrix of numbers and the order of the matrix (number of rows and columns) as arguments and displays the sum of the elements stored in each row.
 (6) (b) Write a C program to check whether a given matrix is a diagonal matrix.

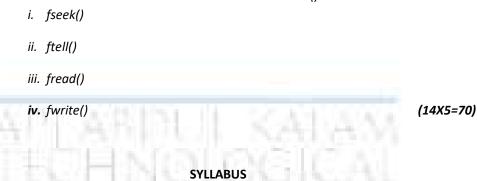
OR	
0	

- 16. (a) Without using any builtin string processing function like strlen, strcat etc., write a program to concatenate two strings.(8)(b) Write a C program to perform bubble sort.(6)
- 17. (a) Write a function namely *myFact* in C to find the factorial of a given number. Also, write another function in C namely*nCr* which accepts two positive integer parameters *n* and *r* and returns the value of the mathematical function*C*(*n*,*r*)(n! / (r! x (n r)!)). The function *nCr* is expected to make use of the factorial function *myFact*. (10) (b) What is recursion? Give an example. (4)

OR

18. (a) With a suitable example, explain the differences between a structure and a union in C. (6)

(b) Declare a structure namely *Student* to store the details (*roll number, name, mark_for_C*) of a student. Then, write a program in C to find the average mark obtained by the students in a class for the subject *Programming in C* (using the field *mark_for_C*). Use array of structures to store the required data (8)


19. (a) With a suitable example, explain the concept of pass by reference. (6)
 (b) With a suitable example, explain how pointers can help in changing the content of a single dimensionally array passed as an argument to a function in C. (8)

OR

20. (a) Differentiate between sequential files and random access files? (4)

(b) Using the prototypes explain the functionality provided by the following functions. (10)

rewind()

Programming in C (Common to all disciplines)

Module 1

Basics of Computer Hardware and Software

Basics of Computer Architecture: processor, Memory, Input& Output devices Application Software & System software: Compilers, interpreters, High level and low level languages Introduction to structured approach to programming, Flow chart Algorithms, Pseudo code (*bubble*)

sort, linear search - algorithms and pseudocode)

Module 2

Program Basics

Basic structure of C program: Character set, Tokens, Identifiers in C, Variables and Data Types , Constants, Console IO Operations, printf and scanf

Operators and Expressions: Expressions and Arithmetic Operators, Relational and Logical Operators, Conditional operator, size of operator, Assignment operators and Bitwise Operators. Operators Precedence

Control Flow Statements: If Statement, Switch Statement, Unconditional Branching using goto statement, While Loop, Do While Loop, For Loop, Break and Continue statements. (Simple programs covering control flow)

Module 3

Arrays and strings

Arrays Declaration and Initialization, 1-Dimensional Array, 2-Dimensional Array String processing: In built String handling functions (strlen, strcpy, streat and strcmp, puts, gets) Linear search program, bubble sort program, simple programs covering arrays and strings

Module 4

Working with functions

Introduction to modular programming, writing functions, formal parameters, actual parameters Pass by Value, Recursion, Arrays as Function Parameters structure, union, Storage Classes, Scope and life time of variables, *simple programs using functions*

Module 5

Pointers and Files

Basics of Pointer: declaring pointers, accessing data though pointers, NULL pointer, array access using pointers, pass by reference effect

File Operations: open, close, read, write, append

Sequential access and random access to files: In built file handlingfunctions (*rewind()*, *fseek()*, *ftell()*, *feof()*, *fread()*, *fwrite()*), *simple programs covering pointers and files*.

Text Books

- 1. Schaum Series, Gottfried B.S., Tata McGraw Hill, Programming with C
- 2. E. Balagurusamy, Mcgraw Hill, Programming in ANSI C
- 3. Asok N Kamthane, Pearson, Programming in C
- 4. Anita Goel, Pearson, Computer Fundamentals

Reference Books

- 1. Anita Goel and Ajay Mittal, Pearson, Computer fundamentals and Programming in C
- 2. Brian W. Kernighan and Dennis M. Ritchie, Pearson, C Programming Language
- 3. Rajaraman V, PHI, Computer Basics and Programming in C
- 4. Yashavant P, Kanetkar, BPB Publications, Let us C

	Module 1: Basics of Computer Hardware and Software	(7 hours)
1.1	Basics of Computer Architecture: Processor, Memory, Input& Output devices	2 hours
1.2	Application Software & System software: Compilers, interpreters, High level and low level languages	2 hours
1.3	Introduction to structured approach to programming, Flow chart	1 hours
1.4	Algorithms, Pseudo code (bubble sort, linear search - algorithms and pseudocode)	2 hours
Module	2: Program Basics	(8 hours)
2.1	Basic structure of C program: Character set, Tokens, Identifiers in C, Variables and Data Types , Constants, Console IO Operations, printf and scanf	2 hours
2.2	Operators and Expressions: Expressions and Arithmetic Operators, Relational and Logical Operators, Conditional operator, sizeof operator, Assignment operators and Bitwise Operators. Operators Precedence	2 hours

Course Contents and Lecture Schedule

2.3	Control Flow Statements: If Statement, Switch Statement, Unconditional Branching using goto statement, While Loop, Do While Loop, For Loop, Break and Continue statements. <i>(Simple programs covering control flow)</i>	4 hours				
Module	e 3: Arrays and strings:	(6 hours)				
3.1	Arrays Declaration and Initialization, 1-Dimensional Array, 2-Dimensional Array	2 hours				
3.2	String processing: In built String handling functions(strlen, strcpy, strcat and strcmp, puts, gets)					
3.3	Linear search program, bubble sort program, simple programs covering arrays and strings	3 hours				
Module	e 4: Working with functions	(7 hours)				
4.1	Introduction to modular programming, writing functions, formal parameters, actual parameters	2 hours				
4.2	Pass by Value, Recursion, Arrays as Function Parameters	2 hours				
4.3	structure, union, Storage Classes,Scope and life time of variables, simple programs using functions	3 hours				
Module	e 5: Pointers and Files	(7 hours)				
5.1	Basics of Pointer : declaring pointers, accessing data though pointers, NULL pointer, array access using pointers, pass by reference effect	3 hours				
5.2	File Operations: open, close, read, write, append	1 hours				
5.3	Sequential access and random access to files: In built file handlingfunctions (rewind() ,fseek(), ftell(), feof(), fread(), fwrite()), simple programs covering pointers and files.	2 hours				

C PROGRAMMING LAB (Practical part of EST 102, Programming in C)

Assessment Method: The Academic Assessment for the Programming lab should be done internally by the College. The assessment shall be made on 50 marks and the mark is divided as follows: Practical Records/Outputs - 20 marks (internal by the College), Regular Lab Viva - 5 marks (internal by the College), Final Practical Exam – 25 marks (internal by the College).

The mark obtained out of 50 will be converted into equivalent proportion out of 20 for CIE computation.

LIST OF LAB EXPERIMENTS

1. Familiarization of Hardware Components of a Computer

2. Familiarization of Linux environment – How to do Programming in C with Linux

3. Familiarization of console I/O and operators in C

i) Display "Hello World"

ii) Read two numbers, add them and display theirsum

iii) Read the radius of a circle, calculate its area and display it

iv)Evaluate the arithmetic expression ((a -b / c * d + e) * (f +g)) and display its solution.Read the values of the variables from the user through console.

4. Read 3 integer values and find the largest amoung them.

5. Read a Natural Number and check whether the number is prime or not

6. Read a Natural Number and check whether the number is Armstrong or not

7. Read n integers, store them in an array and find their sum and average

8. Read n integers, store them in an array and search for an element in the array using an algorithm for Linear Search

9. Read n integers, store them in an array and sort the elements in the array using Bubble Sort algorithm

10. Read a string (word), store it in an array and check whether it is a palindrome word or not.

11.Read two strings (each one ending with a \$ symbol), store them in arrays and concatenate them without using library functions.

12. Read a string (ending with a \$ symbol), store it in an array and count the number of vowels, consonants and spaces in it.

13. Read two input each representing the distances between two points in the Euclidean space, store these in structure variables and add the two distance values.

14. Using structure, read and print data of n employees (Name, Employee Id and Salary)

15. Declare a union containing 5 string variables (*Name, House Name, City Name, State and Pin code*) each with a length of C_SIZE (user defined constant). Then, read and display the address of a person using a variable of the union.

16. Find the factorial of a given Natural Number n using recursive and non recursive functions

17. Read a string (word), store it in an array and obtain its reverse by using a user defined function.

18. Write a menu driven program for performing matrix addition, multiplication and finding the transpose. Use functions to (i) read a matrix, (ii) find the sum of two matrices, (iii) find the product of two matrices, (i) find the transpose of a matrix and (v) display a matrix.

- **19.** Do the following using pointers
 - i) add two numbers

ii) swap two numbers using a user defined function

20. Input and Print the elements of an array using pointers

21. Compute sum of the elements stored in an array using pointers and user defined function.

22. Create a file and perform the following

- iii) Write data to the file
- iv) Read the data in a given file & display the file content on console
- v) append new data and display on console

23. Open a text input file and count number of characters, words and lines in it; and store the results in an output file.

PHL	ENGINEERING	CATEGORY	L	Т	Р	CREDIT	YEAR OF
120	PHYSICS LAB						INTRODUCTION
		BSC	0	0	2	1	2019

Preamble: The aim of this course is to make the students gain practical knowledge to co-relate with the theoretical studies and to develop practical applications of engineering materials and use the principle in the right way to implement the modern technology.

Prerequisite: Higher secondary level Physics

Course Outcomes: After the completion of the course the student will be able to

CO 1	Develop analytical/experimental skills and impart prerequisite hands on experience for engineering laboratories
CO 2	Understand the need for precise measurement practices for data recording
CO 3	Understand the principle, concept, working and applications of relevant technologies and comparison of results with theoretical calculations
CO 4	Analyze the techniques and skills associated with modern scientific tools such as lasers and fiber optics
CO 5	Develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results

Mapping of course outcomes with program outcomes

\square	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3				3	1.114		1	2			1
CO 2	3				3			1	2			1
CO 3	3				3			1	2			1
CO 4	3				3			1	2			1
CO 5	3				3	2114	1	1	2			1

Mark distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration(Internal)
100	100	-	1 hour

Continuous Internal Evaluation Pattern:

Attendance	: 20 marks
Class work/ Assessment /Viva-voce	: 50 marks
End semester examination (Internally by college)	: 30 marks

End Semester Examination Pattern: Written Objective Examination of one hour

SYLLABUS

LIST OF EXPERIMENTS

(Minimum 8 experiments should be completed)

- 1. CRO-Measurement of frequency and amplitude of wave forms
- 2. Measurement of strain using strain gauge and wheatstone bridge
- 3. LCR Circuit Forced and damped harmonic oscillations
- 4. Melde's string apparatus- Measurement of frequency in the transverse and longitudinal mode
- 5. Wave length measurement of a monochromatic source of light using Newton's Rings method.
- 6. Determination of diameter of a thin wire or thickness of a thin strip of paper using air wedge method.
- 7. To measure the wavelength using a millimeter scale as a grating.
- 8. Measurement of wavelength of a source of light using grating.
- 9. Determination of dispersive power and resolving power of a plane transmission grating

10.Determination of the particle size of lycopodium powder

- 11. Determination of the wavelength of He-Ne laser or any standard laser using diffraction grating
- 12. Calculate the numerical aperture and study the losses that occur in optical fiber cable.
- 13.I-V characteristics of solar cell.
- 14.LED Characteristics.

15.Ultrasonic Diffractometer- Wavelength and velocity measurement of ultrasonic waves in a liquid **16.**Deflection magnetometer-Moment of a magnet- Tan A position.

Reference books

- 1. S.L.Gupta and Dr.V.Kumar, "Practical physics with viva voice", Pragati PrakashanPublishers, Revised Edition, 2009
- 2. M.N.Avadhanulu, A.A.Dani and Pokely P.M, "Experiments in Engineering Physics", S.Chand&Co,2008
- 3. S. K. Gupta, "Engineering physics practicals", Krishna Prakashan Pvt. Ltd., 2014
- 4. P. R. Sasikumar "Practical Physics", PHI Ltd., 2011.

CYL	ENGINEERING CHEMISTRY LAB	CATEGORY	L	Т	Р	CREDIT
120		BSC	0	0	2	1

Preamble: To impart scientific approach and to familiarize with the experiments in chemistry relevant for research projects in higher semesters

Prerequisite: Experiments in chemistry introduced at the plus two levels in schools

Course outcomes: After the completion of the course the students will be able to

generate experimental skills and apply these skills to various analyses CO 2 Develop skills relevant to synthesize organic polymers and acquire the practical skills use TLC for the identification of drugs CO 3 Develop the ability to understand and explain the use of modern spectrosoc techniques for analysing and interpreting the IR spectra and NMR spectra of second organic compounds	
use TLC for the identification of drugs CO 3 Develop the ability to understand and explain the use of modern spectrosc techniques for analysing and interpreting the IR spectra and NMR spectra of sectors.	
CO 3 Develop the ability to understand and explain the use of modern spectrosc techniques for analysing and interpreting the IR spectra and NMR spectra of sectors.	l to
techniques for analysing and interpreting the IR spectra and NMR spectra of so	
	opic
organic compounds	ome
CO 4 Acquire the ability to understand, explain and use instrumental techniques for chem	nical
analysis	
CO 5 Learn to design and carry out scientific experiments as well as accurately record	and
analyze the results of such experiments	
CO 6 Function as a member of a team, communicate effectively and engage in fur	her
learning. Also understand how chemistry addresses social, economical	
environmental problems and why it is an integral part of curriculum	and

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО	PO	РО
						2				10	11	12
CO 1	3				2							3
CO 2	3				3							3
CO 3	3				3	-00	6 3					3
CO 4	3				3							3
CO 5	3				1							3
CO 6	3				1							3

10.0

Mark distribution

Total Marks	CIE	ESE	ESE
	marks	marks	Duration(Internal)
100	100	-	1 hour

ESL 120	CIVIL & MECHANICAL WORKSHOP	CATEGORY	L	т	Р	CREDIT	YEAR OF
	Workshor		0	0	2	1	2019

Preamble: The course is designed to train the students to identify and manage the tools, materials and methods required to execute an engineering project. Students will be introduced to a team working environment where they develop the necessary skills for planning, preparing and executing an engineering project.

To enable the student to familiarize various tools, measuring devices, practices and different methods of manufacturing processes employed in industry for fabricating components.

Prerequisite: None

Course Outcomes: After the completion of the course the student will be able to:

Course Outcome	Course Outcome Description
CO 1	Name different devices and tools used for civil engineering measurements
CO 2	Explain the use of various tools and devices for various field measurements
CO 3	Demonstrate the steps involved in basic civil engineering activities like plot measurement, setting out operation, evaluating the natural profile of land, plumbing and undertaking simple construction work.
CO 4	Choose materials and methods required for basic civil engineering activities like field measurements, masonry work and plumbing.
CO 5	Compare different techniques and devices used in civil engineering measurements
CO 6	Identify Basic Mechanical workshop operations in accordance with the material and objects
CO 7	Apply appropriate Tools and Instruments with respect to the mechanical workshop trades
CO 8	Apply appr <mark>opriate safet</mark> y measures with respect to the mechanical workshop trades

Mapping of course outcomes with program outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	1	-	-	-	1	1	-	-	2	2	-	-
CO 2	1	-	-	-	1	1	-	-	2	2	-	-
CO 3	1	-	-	-	1	1	-	2	2	2	1	-
CO 4	1	-	-	-	1	1	-	2	2	2	1	1
CO 5	1	-	-	-	1	1	-	-	2	2		1
CO 6	2											

CO 7	2						
CO 8	2						

Mark distribution

Total Marks	CIE	ESE	ESE Duration
100	70	30	1 hour

Assessment Procedure: Total marks allotted for the course is 100 marks. CIE shall be conducted for 70 marks and ESE for 30 marks. CIE should be done for the work done by the student and also viva voce based on the work done on each practical session. ESE shall be evaluated by written examination of one hour duration conducted internally by the institute.

Continuous Internal Evaluation Pattern:

Attendance	: 20 marks
Class work/ Assessment /Viva-voce	: 50 marks
End semester examination (Internally by college)	: 30 marks

End Semester Examination Pattern: Written Objective Examination of one hour

SYLLABUS

PART 1

CIVIL WORKSHOP

Exercise 1.	Calculate the area of a built-up space and a small parcel of land- Use standard
	measuring tape and digital distance measuring devices

- Exercise 2. (a) Use screw gauge and vernier calliper to measure the diameter of a steel rod and thickness of a flat bar
 - (b) Transfer the level from one point to another using a water level
 - (c) Set out a one room building with a given plan and measuring tape
- Exercise 3. Find the level difference between any two points using dumpy level
- Exercise 4. (a) Construct a $1\frac{1}{2}$ thick brick wall of 50 cm height and 60 cm length using English bond. Use spirit level to assess the tilt of walls.

(b) Estimate the number of different types of building blocks to construct this wall.

Exercise 5. (a) Introduce the students to plumbing tools, different types of pipes, type of connections, traps, valves ,fixtures and sanitary fittings.

(b) Install a small rainwater harvesting installation in the campus

Reference Books:

- 1. Khanna P.N, "Indian Practical Civil Engineering Handbook", Engineers Publishers.
- 2. Bhavikatti. S, "Surveying and Levelling (Volume 1)", I.K. International Publishing House
- 3. Arora S.P and Bindra S.P, "Building Construction", Dhanpat Rai Publications
- 4. S. C. Rangwala, "Engineering Materials," Charotar Publishing House.

PART II

MECHANICAL WORKSHOP

LIST OF EXERCISES

(Minimum EIGHT units mandatory and FIVE models from Units 2 to 8 mandatory)

UNIT 1:- General : Introduction to workshop practice, Safety precautions, Shop floor ethics, Basic First Aid knowledge.

Study of mechanical tools, components and their applications: (a) Tools: screw drivers, spanners, Allen keys, cutting pliers etc and accessories (b) bearings, seals, O-rings, circlips, keys etc.

UNIT 2:- Carpentry : Understanding of carpentry tools

Minimum any one model

1. T – Lap joint 2. Cross lap joint 3. Dovetail joint 4. Mortise joints

UNIT 3:- Foundry : Understanding of foundry tools

Minimum any one model

1.Bench Molding 2. Floor Molding 3. Core making 4. Pattern making

- UNIT 4: Sheet Metal : Understanding of sheet metal working tools
 - Minimum any one model
 - 1. Cylindrical shape
 - 2. Conical shape
 - 3. Prismatic shaped job from sheet metal
- UNIT 5: Fitting : Understanding of tools used for fitting

Minimum any one model

- 1. Square Joint
- 2. V-Joint
- 3. Male and female fitting
- UNIT 6: Plumbing : Understanding of plumbing tools, pipe joints

Any one exercise on joining of pipes making use of minimum three types of pipe joints

UNIT 7: - Smithy: Understanding of tools used for smithy.

Demonstrating the forge-ability of different materials (MS, AI, alloy steel and cast steels) in cold and hot states.

Observing the qualitative difference in the hardness of these materials

Minimum any one exercise on smithy

- 1. Square prism
- 2. Hexagonal headed bolt
- 3. Hexagonal prism
- 4. Octagonal prism

UNIT 8: -Welding: Understanding of welding equipments

Minimum any one welding practice

Making Joints using electric arc welding. bead formation in horizontal, vertical and over head positions

UNIT 9: - Assembly: Demonstration only

Dissembling and assembling of

- 1. Cylinder and piston assembly
- 2. Tail stock assembly
- 3. Bicycle
- 4. Pump or any other machine

UNIT 10: - Machines: Demonstration and applications of the following machines

Shaping and slotting machine; Milling machine; Grinding Machine; Lathe; Drilling Machine.

UNIT 11: - Modern manufacturing methods: Power tools, CNC machine tools, 3D printing, Glass cutting.

Course Contents and Lecture Schedule:

No	Торіс	No of Sessions
1	INTRODUCTION	
1.1	Workshop practice, shop floor precautions, ethics and First Aid knowledge. Studies of mechanical tools, components and their applications: (a) Tools: screw drivers, spanners, Allen keys, cutting pliers etc and accessories (b) bearings, seals, O-rings, circlips, keys etc	1
2	CARPENTRY	
2.1	Understanding of carpentry tools and making minimum one model	2

3	FOUNDRY	
3.1	Understanding of foundry tools and making minimum one model	2
4	SHEET METAL	
4.1	Understanding of sheet metal working tools and making minimum one model	2
5	FITTING	34
5.1	Understanding of fitting tools and making minimum one model	2
6	PLUMBING	
6.1	Understanding of pipe joints and plumbing tools and making minimum one model	2
7	SMITHY	
7.1	Understanding of smithy tools and making minimum one model	2
8	WELDING	
8.1	Understanding of welding equipments and making minimum one model	2
9	ASSEMBLY	
9.1	Demonstration of assembly and dissembling of multiple parts components	1
10	MACHINES	
10.1	Demonstration of various machines	1
11	MODERN MANUFACTURING METHODS	
11.1	Demonstrations of: power tools, CNC Machine tools, 3D printing, Glass cutting	1