

KERALA TECHNOLOGICAL UNIVERSITY

ERNAKULAM- I CLUSTER

SCHEME AND SYLLABI

FOR

M. Tech. DEGREE PROGRAMME

IN

COMPUTER AIDED STRUCTURAL ENGINEERING

(2015 ADMISSION ONWARDS)

SCHEME AND SYLLABI FOR M. Tech. DEGREE PROGRAMME IN COMPUTER AIDED STRUCTURAL ENGINEERING

SEMESTER-1

Exam	Course No:	Name	L-T -P	Internal	End Semes	End Semester Exam	
Slot				Marks	Marks	Duration	
						(hrs)	
А	06CE6011*	Advanced Structural	4-0-0	40	60	3	4
11	000220011	Design	100		00	5	
В	06CE6021*	Structural Dynamics	4-0-0	40	60	3	4
С	06CE6031	Theory of Elasticity	4-0-0	40	60	3	4
D	06CE6041*	Numerical Methods in Civil Engineering	3-0-0	40	60	3	3
Е	06CE6X51	Elective – I	3-0-0	40	60	3	3
F	06CE6061****	Research methodology	1-1-0	100	0	0	2
G	06CE6071	Seminar I	0-0-2	100	0	0	2
Н	06CE6081	Computer Applications Lab	0-0-2	100	0	0	1

Credits: 23

	Elective I (06CE6X51)
06CE6151	Advanced Analysis of Structures
06CE6251	Soft Computing Tools for Engineering
06CE6351	Random Vibrations

* - Common to Structural Engineering and Construction Management

****- Common to Structural Engineering and Construction Management, Construction Engineering and Management, Geo-Mechanics and Structures and Environmental Engineering.

Kerala Technological University – Ernakulam – 06 Cluster SEMESTER-II

Exam Slot	Course No:	Name	L- T – P	Internal Marks	End Sem	End Semester Exam	
					Marks	Duration (hrs)	
A	06CE6012	Advanced Finite Element Methods	4-0-0	40	60	3	4
В	06CE6022	Prestressed Concrete	3-0-0	40	60	3	3
С	06CE6032	Theory of Plates and shells	3-0-0	40	60	3	3
D	06CE6X42	Elective II	3-0-0	40	60	3	3
Е	06CE6X52	Elective III	3-0-0	40	60	3	3
F	06CE6062	Mini Project	0-0-4	100	0	0	2
G	06CE6072	Structural Engineering Design Studio	0-0-2	100	0	0	1

Credits: 19

Elective II - (06CE6X42)		Elective III- (06CE6X52)		
06CE6142**	Bridge Engineering	06CE6152	Structural Stability	
06CE6242	Structural Reliability	06CE6252	High Rise Structures	
06CE6342	Design of Substructures	06CE6352	Experimental Stress Analysis	

** - Common to Structural Engineering and Construction Management and Geo-Mechanics and Structures.

Kerala Technological University – Ernakulam – 06 Cluster SEMESTER-III

Exam	Course No:	Name	L- T – P	Internal	End Semester Exam		Credits
Slot				Marks	Marks	Duration (hrs)	
Α	06CE7X11	Elective IV	3-0-0	40	60	3	3
В	06CE7X21	Elective V	3-0-0	40	60	3	3
С	06CE7031	Seminar II	0-0-2	100	0	0	2
D	06CE7041	Project(Phase 1)	0-0-8	50	0	0	6

Credits: 14

Elective-IV(06CE7X1)		Elective-V(06CE7X21)		
06CE7111	Advanced Metal Structures	06CE7121	Concrete Material Science	
06CE7211	Analysis of Composite Structures	06CE7221	Engineering Fracture Mechanics	
06CE7311	Structural Optimization	06CE7321	Forensic Engineering	

SEMESTER-IV

Exam	Course No:	Name	L- T – P	Internal	End Semester Exam		Credits
Slot				Marks	Marks	Duration (hrs)	
Α	06CE7012	Project	0-0-21	70	30	0	12
		(Phase 2)					

Credits: 12

Total Credits for all semesters: 68

Kerala Technological University - Ernakulam - 06 Cluster

Course No.	Course Title	L-T-P- Credits	Year of Introduction			
06CE6011	011 Advanced Structural Design		2015			
Pre-requisites Basic concepts of analysis and design of structures						
Course Objectives To instruct the students	Course Objectives To instruct the students on					
• The concept of	yield line and its analysis in structure	S				
• The design aspects for special RC elements						
Concept of earthquake resistant design of structures						

Syllabus

Yield line method of analysis of slabs: Characteristic features of yield lines, Design of special RC elements: Design of shear walls (with and without boundary elements), Design of Deep beams, Design of continuous beams Design of flat slabs Concept of Earthquake Resistant Design: Concept of capacity design, Strong Column weak beam. Ductile design - detailing of beams and shear walls. Calculation of Base shear and its distribution by using codal provisions.

Course Outcome

On completion of the course the students shall attain knowledge on the fundamental concepts on the analysis of slabs by yield line theory & design of R.C structures like grid floors, flat slabs, deep beams etc. and also earthquake resistant design of structures and ductile detailing.

Textbooks

- 1. Krishna Raju N., "Advanced Reinforced Concrete Design", CBS Publishers and distributers, New Delhi.
- 2. S. K. Duggal, "Earthquake Resistant Design of Structures", Oxford University Press, New Delhi

- 1. P C Varghese, "Limit State Design of concrete structures".
- 2. Pankaj Agarwal and Manish Shrikhande, "Earthquake Resistant Design of Structures", Prentice Hall of India Private Limited, New Delhi, India.

Course Plan				
Contents	Contact Hours	Sem. Exam Marks		
Module I Yield line method of analysis of slabs:Characteristic features of yield	13	25		

Kerala Technological University – Ernakulam – 06 Cluster				
lines– analysis by virtual work method – Yield line analysis by				
equilibrium method, Design of grid floor - Approximate method-				
Rigorous method (Concept only).				
Module II				
Design of special RC elements: Design of shear walls (with and				
without boundary elements), Design of Deep beams, Design of				
continuous beams- Redistribution of moments.	15	25		
Design of flat slabs: – Introduction-components-IS Code				
recommendations- IS code method of design (with and without drop).				
Module III				
Concept of Earthquake Resistant Design: Objectives, Design				
Philosophy, Limit states, Inertia forces in Structure. Response of				
Structures - Effect of deformations in structure, Lateral Strength,				
Stiffness, Damping and ductility.				
Building Configurations: Size of Building, Horizontal and Vertical layout, Vertical irregularities, Adjacency of Building, Open-ground	15	25		
storey and soft storey, short columns. Effect of shear wall on Buildings.				
Torsion and Twists in Buildings: Causes, Effects, Centre of mass and				
rigidity., Effect of torsion, Torsionally coupled and uncoupled system,				
Lateral load distribution, Numerical example based on IS code				
recommendation.				
Module IV				
R.C.C for Earthquake Resistant Structures: Concept of capacity				
design, Strong Column weak beam. Ductile design, detailing of beams				
and shear walls. Calculation of Base shear and its distribution by using	13	25		
codal provision. Detailing of columns and Beam joints. Performance of	15	23		
R.C.C. Building. Ductiledetailing:-Study of IS: 13920-1993.				
Repair/Reduction of Earthquake Effects: - Methods, Materials and				
retrofitting techniques Base Isolation and dampers.				
End Semester Exam				

Course No.	Course Title	L-T-P- Credits	Year of Introduction			
06CE6021	Structural Dynamics	4-0-0-4	2015			
Pre-requisites	 Basic knowledge of Mechanics of Materials A slight insight into the concepts of vibrations 					
Course Objectives To provide an understanding of how structures vibrate under the influence of different types of dynamic loads.						
Syllabus						

Dynamic load - Degrees of freedom –Formulation of equations of motion - Natural frequency- -D' Alemberts Principle –Energy principle - Rayleigh's method – Principle of virtual displacements – Hamilton's principle.Single Degree of Freedom Systems -Undamped and damped free and forced vibrations – Vibration isolation – Transmissibility Response to periodic forces- Vibration measuring and absorbing equipments -Duhamel integral for undamped system-Response to impulsive loads–Earthquake excitation- Response history and construction of response spectra-Multiple Degrees of Freedom Systems and Continuous systems -Natural modes – orthogonality conditions – modal Analysis – free and harmonic vibration –Continuous systems- Mode superimposition method- Mode acceleration method Approximate methods Rayleigh's method – Dunkerley's method – Stodola's method – Rayleigh –Ritz method – Matrix method.

Course Outcome

On successful completion of the course the students will be able to

- 1. Convert any structural system into its equivalent mechanical system
- 2. Formulate and solve the equation of notion and calculate the structural response
- 3. Determine the natural frequency by means of analytical and approximate methods

Textbooks

- 1. Clough & Penzien, "Dynamics of Structures".
- 2. M.Mukhopadhyay, "Vibrations, Dynamics & Structural systems".

- 1. Timoshenko, "Vibration Problems in Engineering".
- 2. Anil K Chopra, "Dynamics of structures", Pearson Education

Kerala Technological University – Ernakulam – 06 Cluster				
Contents	Contact Hours	Sem. Exam Marks		
Module I				
Introduction: Dynamic load - Types of dynamic loading–Significance				
of structural dynamics in civil engineering practice - Degrees of				
freedom –Equivalent mechanical systems –Formulation of equations of				
motion - Natural frequency- Determination of natural frequency-D'	10	• •		
Alemberts Principle – Energy principle - Rayleigh's method – Principle	10	20		
of virtual displacements – Hamilton's principle.				
Module II				
Single Degree of Freedom Systems: Undamped and damped free and				
forced vibrations – Critical damping – Over damping – Under damping				
- Logarithmic decrement - Energy dissipated in damping-Coulomb				
damping - Response to harmonic loading - Evaluation of damping -	16	20		
Vibration isolation - Transmissibility Response to periodic forces-	16	30		
Vibration measuring and absorbing equipments -Duhamel integral for				
undamped system-Response to impulsive loads-Earthquake excitation-				
Response history and construction of response spectra-Response				
spectrum characteristics-Base excited systems				
Module III				
Multiple Degrees of Freedom Systems and Continuous systems:				
MDF sytems - Natural modes - orthogonality conditions - modal				
Analysis – free and harmonic vibration –Continuous systems- Free	16	25		
longitudinal vibration of bars - Flexural vibration of beams with				
different end conditions - Forced vibration - Mode superimposition				
method- Mode acceleration method				
Module IV				
Approximate methods: Rayleigh's method – Dunkerley's method –	14	25		
Stodola's method – Rayleigh –Ritz method – Matrix method.				
End Semester Exam	<u> </u>			

Course No.	Course Title	L-T-P-Credits	Year of Introduction
06CE6031	Theory Of Elasticity	4-0-0-4	2015
Pre-requisites	Nil		
Course Objectives To enable the students • The fundament material chara	to learn als of stress, strain and displa cterization and Lami's parame	cement relationships, ters.	constitutional law,
 Equilibrium equilibrium equil	uations, compatibility equati roblems in Cartesian and polar alar bars.	ons, stress functions coordinates.	s, solution of two
• Fundamentals of	of Engineering Theory of Plast	icity	
Syllabus			
Concept of Stress at a	a point. Strain and displacem	ent. Constitutive equ	ations Generalized
Hooke's law. Equation	ons of equilibrium. Compatib	oility equations. Stre	ss functions. Two
dimensional problems	in Cartesian and Polar coord	linates. Axis symmet	rical problems and
their solutions. Torsion	n of non circular bars. Saint V	enant's method. Mul	ti cellular sections.
Shear flow. Membrane	e analogy. Enginering theory	of plasticity. Levy-N	lisces and Prandtl-
Rauss equations. flow	rule. Mohr – Coulomb vield cr	iterion for concrete. Y	vield surface in 3 D

space of Principal stresses- Testing of concrete stress strain curve. Flow rule.

Course Outcome

- On successful completion of the course one will be able to apply the principles of theory of elasticity to find solutions to the engineering problems related to the analysis and design of engineering structures and components. The determination of stress distributions will enable him to design satisfactorily the components.
- A student will also be able to use the principles of plasticity to be applied to solve simple problems and to design components.

Textbooks

- 1. Timoshenko S P and Goodier J. N, "Theory of Elasticity", Tata Mcgraw Hill International Student Edition.
- 2. Srinath L. S, "Advanced mechanics of solids", Tata McGraw- Hill Publishing Company Ltd., New Delhi.

Kerala Technological University – Ernakulam – 06 Cluster

- 1. Akhtar Khan, Sujian Huang "Continuum Theory of Plasticity", Wiley Publications.
- 2. Wai-Fah Chen, "Plasticity in reinforced concrete", J-Ross Publishing

Course Plan		
Contents	Contact Hours	Sem. Exam Marks
Module I		
Theory of Elasticity: Introduction to ToE-Equilibrium of a body subjected to forces-Continuum-Stress at a point-Stress Tensor-Stress matrix-Notations-Sign Conventions-Traction Vector on an oblique plane with arbitrary orientation-Stress Transformation rule-Normal Stress and Shear stresses on any plane- Principal Stresses and their directions-Stress invariants-Octahedral normal and shear stresses-Spherical and deviatoric stresses-Stress ellipsoid-Cauchy's stress quadric-One sheeted and two sheeted hyperboloids-Transformation equations in two and three dimensions-Mohr's Circle representations-Equilibrium equations(2D and 3D).		
Introduction to strain-Kinematic or strain displacement equations- Normal strain-Shearing strain-Strain matrix formulation-Displacement components and strain-Pure deformation-Rotation in three dimensions- Principal strains-Strain along a line in terms of components of strain- Strain and rotation rates-Strain transformation rule(3D and 2D Cases)- Strain compatibility equations-physical meaning-Strain measurement- Rosette analysis-Rectangular, Star, Delta rosettes. Material characterization-Typical uniaxial stress strain curve for steel and concrete -Conventional and true values-Generalized Hooke's law- Anisotropic materials-Materials with elastic symmetries-Orthotropic and isotropic cases-Homogeneous materials-Lami's constants -Hooke's law for linear elastic isotropic solids	18	25
Module II Two dimensional stress–strain problems in elasticity: Formulation and method of solutions-Plane stress and plane strain problems– Equations of compatibility in stress- Airy's stress function-Boundary conditions-Polynomial solutions-Examples of loaded beams-2D	10	25

Kerala Technological University – Ernakulam – 06 Cluster]
problems in polar coordinates-Axis symmetrical problems-Stress		
distribution in a hollow cylinder subjected to uniform internal and		
external pressures-Pure bending of curved bars-Strain components in		
polar coordinates-Rotating discs-stress components-effects of circular		
hole on stress distribution of plates-Concentrated force on a straight		
boundary-Stress function and stress components.		
Module III		
Torsion of non-circular straight bars: Saint Venant's semi inverse		
method-Assumed displacements-Warping function-Components of		
stress-Conditions satisfied by warping functions-Determination of		
stress function and its properties along the boundary of the cross		
section-Shearing stresses give torque-Solution for elliptic cross section		
and equilateral triangular cross section-Comparison of a closed tubular	10	25
section and Slit tubular cross section-Multi cellular sections-Shear	12	25
flow-Shear stresses-Torque-Membrane analogy and its applications to		
solution of torsional problems-Stress function contours and warping		
displacement contours for elliptical and triangular cross sections-		
Hollow thin walled sections-Shear stress, torque and angle of twist-		
Very thin rectangular sections-Stress function-Shear Stress-Torque for a		
composite section.		
Module IV		
Engineering theory of plasticity: Introduction-foundation of		
plasticity-the criterion of yielding-representation in the principal stress		
space-the deviatoric stress vector-Tresca and Misces criterion-Plane		
stress yield locus-Strain hardening postulates-Rule of plastic flow-		
Plastic potential-Plastic flow rule in the deviatoric plane-Associated		
flow rule-Stress increment and strain increment vector for a given state		
of stress-Regular yield surface- singular yield surface-constitutive	16	25
equations.		
Levy-Misces and Prandtl-Rauss equations-Geometrical representations		
for work hardening material-Tresca's associated flow rule-Plastic strain		
increment vector associated with the Tresca and Misces criteria-		
Anisotropic flow rule-Uniaxial stress strain cycles in a cyclic hardening		
material.		
Mohr-Coulomb yield criterion for concrete-Yield surface in 3D space		

Kerala Technological University – Ernakulam – 06 Cluster		
of principal stresses - Drucker- Prager yield surface Mohr - Coulomb		
strength criterion in the stress space and in the π plane.		
Testing of concrete – Uniaxial stress-strain curve, pre and post failure		
regime-Criteria of loading and unloadingElastic strain increment		
tensor-Flow rule- associated and non-associated-Uniqueness of solution		
and normality condition of flow.		
End Semester Exam		

ala Technological University – Ernakulam – 06 Cluste K

Course No.	Course Title	L-T-P-Credit	s Ye Intro	ear of oduction
06CE6041	Numerical Methods In Civil Engineering	3-0-0-3	2	2015
Pre-requisites	Nil			
Course ObjectivesTo give awaren	ess to different numerical solut	ions		
• To impart abilit	ty to apply mathematics for find	ling solutions to rea	l-time prol	olems
Syllabus Systems of Linear Equ	uations: Gaussian Elimination	- Factorisation - C	Cholesky's	Method.
Systems of Non- lines	ar equations:Newton Raphson	Method- Newton's	s Modified	l Method.
Finite difference n	nethods.Initial and Boundar	ry value proble	ms .Eige	n value
Problems.Numerical	Integration.Interpolation: Lagr	ange – Hermitian	and cub	vic spline
methods.Numerical So	olution of Partial differential eq	uations: Classificat	tion of sec	ond order
equations - finite dif	ference approximation to part	ial derivatives – S	Solution of	f Laplace
equation and solution of	of wave equation.			
 Enhance the c engineering and Textbooks 	capacity to select appropriate discience.	techniques for ta	ckling pro	blems in
1. Krishna Raju	N and Muthu K.U "Numerica	l Methods for Eng	gineering I	Problems"
Maemillan Indi	a Limited			
2. Grewal B. S, "Y	Numerical Methods in Engineer	ing and Science", k	Channa Pub	olications.
References 1. Rajasekaran. S	s, "Numerical Methods in Sc	ience and Enginee	ering – A	practical
approach", A.H	I Wheeler & Co.			
2. Stanton R.C,	"Numerical Methods for Scie	ence and Engineer	ing", Pren	tice Hall
ofIndia.				
3. Smith G.D "Nu	merical Solutions for Different	ial equation".		
Course Plan				
	Contents		Contact Hours	Sem. Exam Marks
Module I				
Systems of Linear Eq	quations: Gaussian Elimination	- Factorisation -		
Cholesky's Method			10	25
L	12			

Kerala Technological University – Ernakulam – 06 Cluster			
Systems of Non- linear equations: Newton Raphson Method- Newton's			
Modified Method			
Module II			
Finite difference methods: Forward, Central and Backward			
differences.	12	25	
Initial and Boundary value problems - statically determinate and	12	23	
indeterminate beam problems- Buckling of columns.			
Eigen value Problems: Power method – Jacobi method			
Module III			
Numerical Integration: Trapezoidal and Simpson's Rules - Gaussian			
quadrature formula – New mark's Method	10	25	
Interpolation: Lagrange – Hermitian and cubic spline methods.			
Module IV			
Numerical Solution of Partial differential equations: Classification			
of second order equations – finite difference approximation to partial	10	25	
derivatives - Solution of Laplace equation and solution of wave			
equation.			
— • • • •			
End Semester Exam			

Kerala Technological University – Ernakulam – 06 Cluster

Course No.Course TitleL-T-P-CreditsYear of Introduction06CE6151Advanced Analysis Of Structures3-0-0-32015Pre-requisitesBasic knowledge in structural analysis2015Pre-requisitesBasic knowledge in structural analysis3-0-0-32015Course Objectives To instruct the students on• The fundamentals of structural analysis and work energy principles• Concept of matrix analysis of structures• Advanced methods for the analysis of structures• Advanced methods concepts of structures• Advanced methods for the analysis of pin and rigid jointed frames, and continuous beams. Direct• Element approach: analysis of beams & frames (rigid and pin jointed).<	Kerala reennoiogical Oniv	cisity – Emakulani – 00 Clusici		
06CE6151Advanced Analysis Of Structures3-0-0-32015Pre-requisitesBasic knowledge in structural analysisCourse Objectives To instruct the students on• The fundamentals of structural analysis and work energy principles-• Concept of matrix analysis of structures • Advanced methods for the analysis of structures-• Syllabus Review of basic concepts of structural analysis and work energy principles, Stiffness method-coordinate systems-element stiffness matrix. Stiffness method-Physical and Element approach: analysis of pin and rigid jointed frames, and continuous beams, Flexibility method: analysis of beams & frames (rigid and pin jointed).Punce analysis of beams & frames (rigid and pin jointed).Course Outcome On completion of the course the students shall attain knowledge on the fundamental concepts	Course No.	Course Title	L-T-P-Credits	Year of Introduction
Pre-requisites Basic knowledge in structural analysis Course Objectives To instruct the students on • The fundamentals of structural analysis and work energy principles • Concept of matrix analysis of structures • Advanced methods for the analysis of structures • Advanced methods for the analysis of structures • Syllabus Review of basic concepts of structural analysis and work energy principles, Stiffness method–coordinate systems–element stiffness matrix. Stiffness method- Physical and Element approach: – analysis of pin and rigid jointed frames, and continuous beams. Direct stiffness approach: analysis of pin jointed frames, rigid jointed frames and continuous beams, Flexibility method: analysis of beams & frames (rigid and pin jointed). Course Outcome On completion of the course the students shall attain knowledge on the fundamental concepts	06CE6151	Advanced Analysis Of Structures	3-0-0-3	2015
 Course Objectives To instruct the students on The fundamentals of structural analysis and work energy principles Concept of matrix analysis of structures Advanced methods for the analysis of structures Syllabus Review of basic concepts of structural analysis and work energy principles, Stiffness method-coordinate systems-element stiffness matrix. Stiffness method- Physical and Element approach: – analysis of pin and rigid jointed frames, and continuous beams, Direct stiffness approach: analysis of beams & frames (rigid and pin jointed). Course Outcome On completion of the course the students shall attain knowledge on the fundamental concepts	Pre-requisites	Basic knowledge in structura	l analysis	
 Concept of matrix analysis of structures Advanced methods for the analysis of structures Syllabus Review of basic concepts of structural analysis and work energy principles, Stiffness method-coordinate systems-element stiffness matrix. Stiffness method- Physical and Element approach: – analysis of pin and rigid jointed frames, and continuous beams. Direct stiffness approach: analysis of pin jointed frames, rigid jointed frames and continuous beams, Flexibility method: analysis of beams & frames (rigid and pin jointed). Course Outcome On completion of the course the students shall attain knowledge on the fundamental concepts 	Course Objectives To instruct the students • The fundament	s on als of structural analysis and wor	rk energy principles	
SyllabusReview of basic concepts of structural analysis and work energy principles, Stiffnessmethod-coordinate systems-element stiffness matrix. Stiffness method- Physical andElement approach: - analysis of pin and rigid jointed frames, and continuous beams. Directstiffness approach: analysis of pin jointed frames, rigid jointed frames and continuous beams,Flexibility method: analysis of beams & frames (rigid and pin jointed).Course OutcomeOn completion of the course the students shall attain knowledge on the fundamental concepts	Concept of matAdvanced meth	rix analysis of structures nods for the analysis of structures	5	
Course Outcome On completion of the course the students shall attain knowledge on the fundamental concepts	Syllabus Review of basic con method–coordinate sy Element approach: – stiffness approach: ana Flexibility method: ana	cepts of structural analysis ar ystems–element stiffness matri analysis of pin and rigid jointed lysis of pin jointed frames, rigid alysis of beams & frames (rigid a	nd work energy printix. Stiffness method I frames, and continuc I jointed frames and c and pin jointed).	nciples, Stiffness d- Physical and ous beams. Direct ontinuous beams,
in the advanced tonics in structural analysis. This course is also expected to enable a good	Course Outcome On completion of the c	course the students shall attain knows in structural analysis. This course	nowledge on the fund	lamental concepts

understanding of how standard software packages operate.

Textbooks

- 1. Rajesekharan & Sankarasubramanian,G., "Computational Structural Mechanics", Prentice Hall of India, 2001.
- Pandit G.S. and Gupta S.P., "Structural Analysis-A Matrix Approach", Tata McGraw-Hill PublishingCompany Limited, New Delhi

- Mukhopadhyay M., "Matrix Finite Element Computer and Structural Analysis", Oxford & IBH, 1984.
- 2. Reddy C.S., "Basic Structural Analysis", Tata McGraw Hill Publishing Co.1996.

Course Plan		
Contents	Contact Hours	Sem. Exam Marks
Module I		
Matrix methods: Classification of structures-discrete structures-		
elements-nodes - Generalised Measurements -Degrees of freedom -		
static& kinematic indeterminacy Constrained Measurements -	10	25

Kerala Technological University – Ernakulam – 06 Cluster			
Behaviour of structures - Principle of superposition- Stiffness method-			
coordinate systems-element stiffness matrix			
Module II			
Stiffness method -Physical approach and Element approach :- Analysis of pin jointed frames, continuous beams and rigid jointed frames (temperature effect, settlement of supports).	10	25	
Module III			
Direct stiffness approach : Structure stiffness matrix–assembly– equivalent joint load – incorporation of boundary conditions – solutions–Gauss elimination–matrix inversion– principle of contra- gradience -Analysis of pin jointed frames, continuous beams and rigid jointed frames (temperature effect, settlement of supports).	12	25	
Module IV Flexibility method: ElementFlexibility matrix-truss element-beam element-force transformation matrix – equilibrium-compatibility- analysis of beams & rigid and pin jointed frames (temperature effect, settlement of supports and lack of fit). End Somector Ever	10	25	
End Semester Exam			

Course No.	Course Title	L-T-P- Credits	Year of Introduction
06CE6251	Soft Computing Tools For Engineering	3-0-0-3	2015
Pre-requisites	Nil		
Course Objectiv	es		
To instruct the stude	ents on		
• The concept	of Classical Optimization Technique	s	
• Engineering	applications of Optimization		
• Non-Linear I	Programming		
• Optimum dea	sign RC, PSC, Steel structural elemen	ts	
Syllabus Need for soft compu	uting techniques - components of soft	computing, Cla	ssical Optimization
Techniques: Engineering applications -Linear Programming: Standard form of Linear			
programming problem, simplex method, revised simplex Method. Non-Linear Programming			
Stochastic Programming Application Problems: Optimum design RC, PSC, Steel structural			
elements. Algorithm	ns for optimum designs. Introduction	on to genetic a	lgorithms: Natural

evolution - properties -classification.

Course Outcome

The course will give the students knowledge on the concept of Classical Optimization Techniques, the Engineering applications of Optimization, Linear Programming: Standard form of Linear programming problem, its applications and also Engineering optimization problem solving using genetic algorithm

Textbooks

- 1. Rao.S.S Optimization Theory and Applications, Wiley Eastern Limited, 1978.
- 2. Fox.R.L. Optimization Methods for Engineering Design, Addison Wesley, 1971.

- Stark. R.M. Nicholls.R.L., Mathematical Foundations for Design, McGraw Hill Book Company.
- Narsingk Deo System simulation with digital computer, Prentice Hall of India Pvt, Ltd. New Delhi – 1989.

Course Plan		
Contents	Contact Hours	Sem. Exam Marks
Module I		
Introduction: Need for soft computing techniques - components of soft		

Kerala Technological University – Ernakulam – 06 Cluster		
computing, Classical Optimization Techniques: Engineering		
applications, Statement of optimization problem, Classification of		
optimization problems, Optimization techniques. Single variable	12	25
optimization, Multivariable optimization with no constrains, with		
equality constraints - Lagrange multiplier -method, constrained		
variation method - and with inequality constraints Kuhn Tucker		
conditions.		
Module II		
Linear Programming: Standard form of Linear programming		
problem, simplex method, revised simplex Method. Non-Linear		
Programming: One dimensional minimization methods, Elimination	12	25
and Interpolation methods, unconstrained Optimization Techniques,		
Direct Search methods, Descent Methods, Constrained Optimization		
Techniques, Direct methods, indirect methods.		
Module III		
Stochastic Programming: For optimization of design of structural		
elements with random variables.	8	25
Application Problems: Optimum design RC, PSC, Steel structural		
elements. Algorithms for optimum designs.		
Module IV		
Introduction to genetic algorithms: Natural evolution – properties –		
classification- GA features - coding - selection - reproduction - cross	10	25
over and mutation operators - basic GA and structure. Engineering		
optimization problem solving using genetic algorithm.		
End Semester Exam		

Course No.	Course Title	L-T-P- Credits	Year Introdu	of ction
06CE6351	Random Vibrations	3-0-0-3	201	5
Pre-requisites	Nil			
Course Objectives To instruct the students • The concept of • Concepts of sto	s on Probability Theory & Rando ochastic processes & The pov	m variables ver spectral density	function	
• Linear vibratio				
Syllabus Introduction to Rando	m vibration & probabilistic	modeling Axioms	of probabilit	ty theory:
random variables cono	anto of stochastic processos r	y distributions and	ty function	Numerical
simulation of random	processes Linear Vibratio	n Analysis system	response to	vullerical
excitations Generalizat	tion to multi degree-of-	freedom systems	Nonlinear S	Stochastic
Vibration Method of a	equivalent statistical lineariz	ation. State space	moment and	cumulant
equations. State space	moment and cumulant equati	ons		• • • • • • • • • • • • • • • • • • • •
Course Outcome On successful complet	ion of the course the students	s shall attain knowle	edge on the co	oncepts of
Probability Theory &	k Random variables, stoch	astic processes, po	ower spectra	l density
function, probability of	distributions, moments, corr	elation and covaria	ance function	ıs, Linear
Vibration Analysis- Re	eview of deterministic dynam	ics and impulse res	ponse functio	ons.
Textbooks 1. Nigam N.C, Int 2. Lin Y.K, Proba	troduction to random vibration bilistic theory in structural d	n, MIT press, 1983 ynamics, McGraw H	Hill, 1983	
References1.Bendat J.S andWiley, 2011Viley, 20112.Clough R.W and	Piersol A.G, Random data an nd Penzien J, Dynamics of str	nalysis and measure ructures, McGraw H	ment procedu lill, 1975	ıre, John
	Course Pl	an		
	Contents		Contact Hours	Sem. Exam Marks
Module I				
Probability Theory &	Random variables - Intro	duction to Randor	n	
vibration & probabili	istic modeling. Axioms of	probability theory	/:	

25

12

probability space & random variables. Probability distributions and

Kerala Technological University – Ernakulam – 06 Cluster		
density functions of random variables, joint and marginal distribution		
and density functions, functions of random variables. Expectations and		
moments of random variables, Baye's theorem, conditional random		
variables, conditional expectations. Characteristic functions, moment		
generating functions, cumulants, relationship between joint probability		
density functions and characteristic functions, numerical issues,		
covariance and independence. Sequences of random variables,		
stochastic convergence, limit theorems.		
Module II		
Concepts of stochastic processes, probability distributions, moments, correlation and covariance functions The power spectral density function. Stationarity and non-stationarity of stochastic processes, ergodicity of a stochastic process. Limits of a stochastic process, Continuity & Differentiability, stochastic derivatives and integrals. The Fokker-Planck-Kolmogorov equation. Introduction to stochastic calculus. Numerical simulation of random processes.	12	25
Module III		
Linear Vibration Analysis Review of deterministic dynamics and impulse response functions of systems, system response to random excitations. Response to stationary & weakly stationary excitations and to delta-correlated excitations, Response to Gaussian excitations.Non- stationary excitations.Joint behavior of the time derivative and its response & Markov vector approach.Linear dynamics and harmonic transfer functions.Generalization to multi degree-of-freedom systems.State space formulation of equations of motion.The Fokker- Planck equation for linear systems.	8	25
Module IV		
Nonlinear Stochastic Vibration The Fokker-Planck equation for sdof systems. The Fokker-Planck equation for mdof systems. Methods for Numerical solutions for the FPK equation: finite difference. Methods for Numerical solutions for the FPK equation: finite element Method. Numerical solutions for the FPK equation: Path integral method. Method of equivalent statistical linearization. State space moment and cumulant equations. State space moment and cumulant equations.	10	25

End Semester Exam

Course No.	Course Title	L-T-P-Credits	Year Introdu	of ction
06CE6061	Research Methodology	1-1-0-2	201	5
Pre-requisites	Nil			
Course Objectives To teach and make t	he student aware abou	t the methodology and	techniques	of doing
research both in techno	ology as well as in social	sciences.		
Syllabus Objectives and types	of research, research	methods vs methodology	, Different	types of
research, Research de	sign and execution, Ex	xecution of the research,	data colle	ction and
analysis, Reporting and	d thesis writing.			
Course Outcome On successful comple research and emanate i	etion of the course the ts outcomes to the outside	students will be equippe de world.	ed to carry	out their
Textbooks 1. Kothari C.R., R 2. Sam Daniel P. a	Research Methodology, N and Aroma G. Sam, Res	New Age International Pul earch Methodology, Gyan	olishing. Publishing	House
1. Panneerselvam	R., Research Methodolo	ogy, PHI Learning Pvt. Lto	1.	
2. Bhattacharyya	D.K., Research Methodo	blogy, Excel Books India.		
	Cours	e Plan		Som
	Contents		Contact Hours	Exam Marks
Module I				
Objectives and types	of research, research m	nethods vs methodology;		
Different types of re	search, Defining and f	formulating the research		
problem, selecting the	e problem, necessity o	f defining the problem,		
importance of literatur	e review in defining a p	roblem, Literature review	7	25
- primary and se	condary data/informat	ion sources, reviews,		
monographs, patents,	discussion series,	white papers, research		
databases like CMIE	, BB, UNSD etc., cr	ritical literature review,		
identifying gap areas fi	rom literature review.			
Module II				
Research design and	execution: Research de	esign – basic principles,		
need of research desig	gn, features of good de	sign, important concepts		

Kerala Technological University – Ernakulam – 06 Cluster		
relating to research design, observation and facts, laws and theories,	7	25
prediction and explanation, development of models		
Module III		
Execution of the research, data collection and analysis: Aspects of		
method validation, observation and collection of data, methods of data	7	25
collection, different sampling methods, data analysis techniques of	7	23
hypothesis testing, ANOVA, randomized block design (RBD) and		
completely randomized design (CRD).		
Module IV		
Reporting and thesis writing: Structure and components of scientific		
reports, types of report, technical reports and thesis. Different steps in		
thesis writing, layout, structure and language of typical reports,	7	25
bibliography, referencing and footnotes. Research ethics - ethical	7	23
issues, ethical committees, Scholarly publishing - design of research		
paper, citation and acknowledgement, plagiarism, reproducibility and		
accountability.		
End Semester Exam		

End Semester Exam

Course No.	Course Title	L-T-P-Credits	Year of Introduction
06CE6071	Seminar – I	0-0-2-2	2015
Pre-requisites	Nil		
Course Objectives	}		
To enable the students	to		
Refer national	& international journals		
• Interpret the da	ta available and present	the same in a systematic	manner.
Syllabus			
Students have to regis	ster for the seminar and	select a topic in consu	ltation withany faculty
member offering cours	ses for the programme.	A detailed write-up onth	ne topic of the seminar
is to be prepared in the	e prescribed format give	n by theDepartment. The	e seminar shall be of 30
minutes duration and a	a committee withthe He	ead of the department as	the chairman and two
faculty members from	thedepartment as men	nbers shall evaluate the	seminar based on the
report and coverage of	f the topic, presentation	and ability to answer the	e questions putforward
by the committee.			

Course Outcome

• The student will be able to present the seminar in a befitting manner and answer to the queries regarding the selected topic.

Course No.	Course Title	L-T-P-Credits	Year of Introduction
06CE6081	Computer Applications Lab	0-0-2-1	2015
Pre-requisites	Nil		
Course Objective	es		

To instruct the students on

- Practical training related to structural engineering.
- Structural analysis & design software STAAD Pro.
- Structural analysis & design software NISA with emphasis on NISA Civil.

Syllabus

Analysis and design of various structural elements like beams, portal frames, trussesAnalysis and design of framed structures under different loading conditions like Dead Load, Live Load, Wind Load (IS: 875 Part 1 / Part 2 / Part 3), Earth Quake Load (IS: 1893 Part 1) and its Combinations as per codal Provisions

Course Outcome

The student has to practice and attain thorough knowledge on the software packages by solving different types of problems.

Course No.	Course Title	L-T-P- Credits	Year of Introduction
06CE6012	Advanced Finite Element Methods	4-0-0-4	2015
Pre-requisites	Basic knowledge in structura	al analysis	
Course Objective	es		

To familiarize the students on

- The concept of Basics of finite element method (FEM), Idealization of structures and general procedure of FEA
- Finite Element modeling of one and two dimensional problems.
- Applications of FEM in analysis of trusses Continuous Beam ,Plane Frames etc.

Syllabus

Introduction to FEM - Basic Equations of Solid Mechanics - Different approaches of FEM, Variational principles weighted residual approach and method of virtual work Basics of finite element method (FEM), Idealization of structures -Mathematical model - General procedure of FEA- Shape functions – Lagrange and serendipity elements, Isoparametric elements-Polynomials - Lagrangian and Hermition Interpolation -Convergence criteria - Conforming & nonconforming elements – Patch test. Stiffness matrix - Bar element - Beam element - Plane stress and plane strain and axisymmetric problems static condensation - Isoparametric elements - Numerical Integration.- Gauss- Quadrature ,Analysis of trusses, Finite Element Analysis of Continuous Beam ,Plane Frame Analysis, Introduction to plate and shell elements

Course Outcome

On completion of the course the students shall attain knowledge on the fundamental finite element method (FEM), general procedure, development of stiffness matrices etc. The students shall gain ample knowledge on Finite Element Analysis of Continuous Beam ,Plane Frame Analysis, Analysis of Grid and Space Frame ,plate and shell elements etc.

Textbooks

- 1. O C Zienkiewicz,."Finite Element Method", fifth Edition,McGraw Hill, 2002
- R.D.Cook, "Concepts and Applications of Finite Element Analysis", John Wiley & Sons

- 1. C.S.Krishnamoorthy, "Finite Element Analysis", Tata McGraw Hill .New Delhi, 1987.
- S.Rajasekharan, "Finite Element Analysis in Engineering Design", S Chand & Co. Ltd.1999

Course Plan		
Contents	Contact Hours	Sem. Exam Marks
Module I		
Introduction to FEM - Basic Equations of Solid Mechanics - Review of equilibrium conditions, Strain-displacement relations, Stress - Strain relations, Plane stress and plane Strain problems, Variational principles weighted residual approach and method of virtual work. Basics of finite element method (FEM), Idealization of structures -Mathematical model - General procedure of FEA	15	25
Module II		
Shape functions – Generalised coordinates – Natural coordinates – Compatibility - C^0 and C^1 elements – Convergence criteria – Conforming & nonconforming elements – Patch test. Lagrange and serendipity elements, Element properties-One and two dimensional problems. Isoparametric elements- four noded-eight node elements. Polynomials - Lagrangian and Hermition Interpolation functions	15	25
 Module III Stiffness matrix - Bar element - Beam element - Plane stress and plane strain problems -Triangular elements - Constant Strain Triangle - Linear Strain Triangle – Legrangian and Serendipity elements, static condensation - Isoparametric elements- axisymmetric problems - Numerical Integration Gauss- Quadrature . 	12	25
Module IV Applications of FEM -Analysis of trusses-Continuous Beam-Plane Frames-Introduction to plate and shell elements-FEM for thin and thick Plates – Shells-Plate bending theory End Semester Exam	14	25

Course No.	Course Title	L-T-P-Credits	Year of Introduction
06CE6022	Prestressed Concrete	3-0-0-3	2015
Pre-requisites	Nil		
Course Objectives To impart to students • Basic concept of	of Prestressing, Analysis of pres	stress and bending stre	288
• Design of Prete	ensioned and Post-Tensioned Fl	exural Members	
• Prestressing of	statically indeterminate structur	res	
Composite con	struction of Prestressed and in s	situ Concrete	

Syllabus

Basic concept of Prestressing, Systems of Prestressing: - Pre tensioning and Post tensioning, Analysis of prestress and bending stress: - Stress concept, Strength concept-Losses of Prestress .

Deflection of beams Effect of tendon profile on deflections, Prediction of long term defelection-Elastic Design: Shear and Torsional Resistance of PSC members Simplified code procedure for bonded and unbonded symmetrical and unsymmetrical sections.Design of sections for flexure: - Expressions for minimum section modulus, Prestressing force and Eccentricity. Limiting zone for prestressingforce.Design of Pretensioned and Post-Tensioned Flexural Members- Prestressing of statically indeterminate structures Concept of Linear transformation, Guyon's theorem, Concordant cable profile.End blocks: - Anchorage zone Stresses Composite construction -Tension members- Design and analysis of PSC slabs

Course Outcome

On completion of the course the students shall attain knowledge on analysis and design of prestressed concrete beams(determinate and indeterminate),post tensioned slabs, tension members etc andComprehend the design of various prestressed concrete members used in practice.

Textbooks

- 1. N. Krishna Raju, "Prestressed concrete", Tata McGraw Hill Publishing Co.Ltd.
- 2. N. Rajagopal, "Prestressed Concrete", Narosa Publishing House, New Delhi.

- S. Ramamrutham, "Prestressed Concrete", DhanpatRai Publishing Company (P) Ltd., New Delhi.
- 2. Y. Guyon, "Prestressed Concrete", C. R. Books Ltd., London

Course Plan	
Contents	

|--|

Prestressing of statically indeterminate structures: Advantages,			
Effect, Method of achieving continuity, Primary, Secondary and			
Resultant moments, Pressure line, Concept of Linear transformation,			
Guyon's theorem, Concordant cable profile.			
End blocks: - Anchorage zone Stresses, Stress distribution in end block,			
Methods of investigation, Anchorage zone reinforcements, Design (IS			
Code method only)			
Module IV			
Composite construction of Prestressed and in situ Concrete: Types,			
Analysis of stresses, Differential shrinkage, Flexural strength, Shear			
strength, Design of composite section.	0	25	
Tension members: Load factor, Limit state of cracking, Collapse,	8	25	
Design of sections for axial tension.			
Design of Special Structures: Design PSC slabs, Pipes, Circular water			
tanks.(Concepts only)			
End Semester Exam			

Kerala Technological Univ	ersity – Ernakulam – 06 Clus	ter	
Course No.	Course Title	L-T-P-Credits	Year of Introduction
06CE6032	Theory Of Plates And Shells	3-0-0-3	2015
Pre-requisites	Nil		
Course Objectives To enable the students • Classical and r under small def	to learn nodern method of analy flections.	sis of Love – Kirchho	ff theory of thin plates
Dura handing of	nd symmetrical handing	of aircular platas	
• Fulle behaning an		of circular plates.	
Bending of late	rally loaded circular plat	tes. Differential Equatio	ns.
• Navier and Lev	y's solutions for simply	supported plates.	
• Shell theories, s	shell statics, deformation	of shells, Membrane th	eory of shells,
• Pucher stress fu	inction		
Syllabus			
Pure Bending of Thin	Plates, Symmetrical Bo	ending of Circular Plate	es. Small deflection of
laterally loaded plate	es. Kirchhoff's -Love	Theory. Navier and	Levy's solutions for
rectangular plates.			
Shells – Geometrica	l relations. CODAZZI	and GAUSS equation	ons. Gauss curvature.
Synclastic and anticla	astic surfaces. General	Shell classification. S	hell theories. Love -
Kirchhoff theory.Station	cs of a shell. Basic equa	ation of doubly curved	shell. Stress resultants

and moment resultants. Membrane theory of doubly curved shell other than shell of revolutions. Pseudo stress resultant . Shell equations of equilibrium. Pucher stress function and applications.

Course Outcome

On successful completion of the course the student will be able to analyse and design plate structures as well as shell structures. A student is expected to acquire skill in the application of Membrane theory to analyse and design shells of different types like hyperbolic paraboloid, elliptic paraboloid and conoids.

Textbooks

- 1. Theory of Plates and Shells, Stephen P. Timoshenko, S. WoinowskyKrieger, Tata McGraw Hills Ltd Publications 2010.
- 2. Thin Shell Structures- Classical and Modern Analysis, J.N Bandyopadhyay, Hard cover -2007, New Age International Publications

- Design and Construction of Concrete Shell Roofs , G.S Ramaswamy, CBS Publications
- 2. Thin Plates and Shells, Theory, Analysis and Applications, Edward Ventsel, TheodorKrauthammer.

Course Plan			
Contents	Contact Hours	Sem. Exam Marks	
Module I			
Plate Theory : Introduction to Pure Bending of Thin Plates with Small Deflections: Slpoe and curvature of slightly bent plates- Relation between curvature and bending moments in pure bending. Particular cases of pure bending. Symmetrical Bending of Circular Plates:-Differential equation for symmetrical bending of laterally loaded circular plates- Uniformly loaded circular plates- Circular plate with a circular hole at the center- Circular plate concentrically loaded- Circular plate loaded at the center.	10	25	
 Module II Small Deflections of Laterally Loaded Plates: The Differential equation of the deflection surface based on Kirchhoff's -Love hypothesis and assumptions. Boundary conditions – Reduction of the problem of bending of a plate to that of deflection of a membrane. Simply Supported Rectangular Plates Under Sinusoidal Load:Navier solution for simply supported rectangular plates. Navier solution for a single load uniformly distributed over the area of a small rectangle (Patch Load). Levy's solution for a simply supported rectangular plates under hydrostatic pressure. 	8	25	
Module III Shell Theory: Introduction to the General Shell Theory: Examples of shell structures in engineering and other fields- Advantages of Shell	9	25	

Kerara Teenhologicar Oniversity – Ernakulani – 00 Cluster		
forms- General definitions and fundamentals. Classifications- Thin		
shells - Linear shell theories- Love- Kirchhoff hypothesis- First		
order, second order approximation theories - improved theories-		
subsequent development of general nonlinear theories and specialized		
shell theories – shallow shells- Membrane or momentless state of stress.		
The highest efficiency of a shell as a structural member is associated		
with its thinness and curvature.		
Statics of a shell: Hookes law for thin shell – Differential element		
isolated from a shell by means of four sections normal to its middle		
surface and tangential to the lines α and $\alpha + d\alpha$, β and $\beta + d\beta$. Stress		
resultants and Couples – Equilibrium of shell element – Six equations		
of equilibrium (reduced to 5 with 8 unknowns)- Reduced to three		
equations of equilibrium- Expressions for stress resultants and stress		
couples in terms of strains and curvatures.		
Folded Plates: Classifications, applications – analysis methods		
Module IV		
Deformation of Sells: Definitions and notations- Stress resultants and		
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a		
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of		
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface –		
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the		
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the three components of the strains of the middle surface and three		
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the three components of the strains of the middle surface and three quantities representing the changes of curvature and the twist of the		
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the three components of the strains of the middle surface and three quantities representing the changes of curvature and the twist of the middle surface. Discussion on deformation of shells where bending		
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the three components of the strains of the middle surface and three quantities representing the changes of curvature and the twist of the middle surface. Discussion on deformation of shells where bending stresses can be neglected and membrane theory can be accepted.	15	25
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the three components of the strains of the middle surface and three quantities representing the changes of curvature and the twist of the middle surface. Discussion on deformation of shells where bending stresses can be neglected and membrane theory can be accepted.	15	25
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the three components of the strains of the middle surface and three quantities representing the changes of curvature and the twist of the middle surface. Discussion on deformation of shells where bending stresses can be neglected and membrane theory can be accepted. Shells in the form of surface of revolution and loaded symmetrically	15	25
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the three components of the strains of the middle surface and three quantities representing the changes of curvature and the twist of the middle surface. Discussion on deformation of shells where bending stresses can be neglected and membrane theory can be accepted. Shells in the form of surface of revolution and loaded symmetrically with respect to their axis: Particular cases of shell in the form of surface	15	25
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the three components of the strains of the middle surface and three quantities representing the changes of curvature and the twist of the middle surface. Discussion on deformation of shells where bending stresses can be neglected and membrane theory can be accepted. Shells in the form of surface of revolution and loaded symmetrically with respect to their axis: Particular cases of shell in the form of surface of revolution – Spherical Dome.	15	25
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the three components of the strains of the middle surface and three quantities representing the changes of curvature and the twist of the middle surface. Discussion on deformation of shells where bending stresses can be neglected and membrane theory can be accepted. Shells in the form of surface of revolution and loaded symmetrically with respect to their axis: Particular cases of shell in the form of surface of revolution – Spherical Dome.	15	25
Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the three components of the strains of the middle surface and three quantities representing the changes of curvature and the twist of the middle surface. Discussion on deformation of shells where bending stresses can be neglected and membrane theory can be accepted. Shells in the form of surface of revolution and loaded symmetrically with respect to their axis: Particular cases of shell in the form of surface of revolution – Spherical Dome. Membrane Theory of Cylindrical Shells: Equations of equilibrium and solutions.	15	25
 Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the three components of the strains of the middle surface and three quantities representing the changes of curvature and the twist of the middle surface. Discussion on deformation of shells where bending stresses can be neglected and membrane theory can be accepted. Shells in the form of surface of revolution and loaded symmetrically with respect to their axis: Particular cases of shell in the form of surface of revolution – Spherical Dome. Membrane Theory of Cylindrical Shells: Equations of equilibrium and solutions. 	15	25
 Deformation of Sells: Definitions and notations- Stress resultants and moment resultants – Bending strain considering the unit elongation of a thin lamina at a distance from the middle surface – Considering radii of curvature after deformation and stretching of the middle surface – Resultant forces per unit length and moment resultants in terms of the three components of the strains of the middle surface and three quantities representing the changes of curvature and the twist of the middle surface. Discussion on deformation of shells where bending stresses can be neglected and membrane theory can be accepted. Shells in the form of surface of revolution and loaded symmetrically with respect to their axis: Particular cases of shell in the form of surface of revolution – Spherical Dome. Membrane Theory of Shells of Double Curvature other than Shells of Revolution : Geometrical relations – Radius vector of a point on a 	15	25

Kerala Technological University – Ernakulam – 06 Cluster	
surface given in the form $z = f(x,y)$ – Area of element – the first and	
second quadratic forms- Equations of CODAZZI and GAUSS.	
Principal curvatures - Gauss curvature. Synclastic , developable or	
anticlastic surfaces.	
Pseudo stress resultant: Equations of equilibrium – Reduction of three	
equations of equilibrium to a single differential equation by introducing	
a stress function as suggested by Pucher . A shell in the form of an	
Elliptic Paraboloid – A shell in the form of a Hyperbolic Paraboloid.	
End Semester Exam	

Kerala Technological University - Ernakulam - 06 Cluster

Course No.	Course Title	L-T-P- Credits	Year of Introduction
06CE6142	Bridge Engineering	3-0-0-3	2015
Pre-requisites	Nil		
Course Objectives			
To instruct the students	s on		
• The basic con	cents in planning of bridges	in terms of geo	graphical location and

- The basic concepts in planning of bridges in terms of geographical location and functionality
- The design of various types of bridges
- The design aspects of bearings ,substructure and foundation
- Construction methods and rehabilitation of bridges

Syllabus

Planning of bridges:- selection of site, design of right, skew and curved slab bridges. Design of girder bridges, balanced cantilever bridges- pre stressed concrete bridges. Design of elastomeric bearings, Substructure design- piers and abutments, Bridge foundations design. Design of composite bridges (steel & concrete).Major construction methods and maintenance and rehabilitation of bridges.

Course Outcome

On completion of the course the students shall attain knowledge on the basic concepts in proportioning and design of various types of bridges, helps to determine the actions to be considered for the design of bridge according to IRC codes, and the design of substructure and foundations for the bridge.

Textbooks

- Krishna Raju N (1996), "Design of Bridges", TataMcGrawHill, publishing company, New Delhi.
- 2. Victor D.J (19991), "Essentials of Bridge Engineering", Oxford & IBH publishing company, New Delhi.

- 1. Ponnuswami S (1993), "Bridge Engineering", Tata Mc–GrawHill, publishing company, New Delhi.
- Raina V.K (1988), "Concrete Bridge Practice- Construction Maintenance &Rehabilitation", Tata Mc-GrawHill, publishing company, New Delhi

Course Plan		
Contents	Contact Hours	Sem. Exam Marks

Kerala Technological University – Ernakulam – 06 Cluster		
Module I Planning of bridges: Investigation for bridges– selection of site. Design of RCC bridges– IRC loading– types of bridges– components of bridges– analysis and design of right, skew and curved slab bridges.	12	25
Module II Design of girder bridges:T-beam bridges– Analysis and design of deck slab, longitudinal girders and cross girders–Pigeaud's method– Courbon's method– Morice and Little method– Hendry–Jaegar method– grillage analogy method- balanced cantilever bridges- prestressed concrete bridges(simply supported case only).	12	25
Module III Bearings:importance of bearings– bearings for slab bridges– bearings for girder bridges–Design of elastomeric bearings –Joints – Appurtenances.Substructure- different types- materials for piers and abutments- Forces on piers and abutments- substructure design– piers and abutments and approach structures - Bridge foundations - open, pile, well and caisson.	10	25
Module IV Design of composite bridges (steel & concrete):Introduction to analysis and design of long span bridges like suspension and cable stayed bridges. Major construction methods and maintenance and rehabilitation of bridges.	8	25
End Semester Exam		

Kerala Technological University – Ernakulam – 06 Cluster

Course No.	Course Title	L-T-P-Credits	Year of Introduction	
06CE6242	Structural Reliability	3-0-0-3 2015		
Pre-requisites	Nil			
Course Objectives To instruct the student Basic Concepts Probability the	s on s of structural safety ory, resistance distribution and	1 parameters-statistic	cs of properties of	
oncrete and stProbabilistic ar	eel, strength of bricks and mortanalysis of loads, Basic structural	ar reliability	s of properties of	
Syllabus				

Concepts of structural safety-histograms-sample correlation, Probability theory, resistance distribution and parameters-statistics of properties of concrete and steel, characterisation of variables of compressive strength of concrete in structures Probabilistic analysis of loads Wind load-introduction-wind speed-return period, Basic structural reliability computation of structural reliability. Monte carlo study of structural safety and applications, Level-2 Reliability method: - Introduction-basic variables and failure surface

Course Outcome

Students, on completion of the course will have the understanding on basic Concepts of structural safety, Probability theory, resistance distribution and parameters, dimensional variations, characterisation of variables of compressive strength of concrete in structures, yield strength of concrete in structures and yield strength of steel. Probabilistic analysis of loads: - Gravity load, Wind load, probability model of wind load and Basic structural reliability.

Textbooks

- 1. NobrertLlyd Enrick, "Quality control and reliability", Industrial press New York.
- 2. A K Govil, "Reliability engineering", Tata McGraw Hill, New Delhi.

- 1. Alexander M Mood, "Introduction to the theory of statistics", McGraw Hill, Kogakusha Ltd.
- 2. Ranganathan, "Reliability of structures".

Course Plan			
Contents	Contact Hours	Sem. Exam Marks	
Module IConceptsofstructuralsafety:-Basicstatistics:-Introduction-data			
reduction-histograms-sample correlation.	8	25	
Kerala Technological University – Ernakulam – 06 Cluster			
---	----	----	
Module II			
Probability theory, resistance distribution and parameters:-			
Introduction- statistics of properties of concrete and steel, statistics of			
strength of bricks and mortar, dimensional variations-characterisation	14	25	
of variables of compressive strength of concrete in structures and yield			
strength of concrete in structures and yield strength of steel – allowable			
stresses based on specified reliability.			
Module III			
Probabilistic analysis of loads: - Gravity load-introduction-load as a			
stochastic process. Wind load-introduction-wind speed-return period-	12	25	
estimation of lifetime wind speed-probability model of wind load.			
Basic structural reliability: - Introduction-computation of structural			
reliability. Monte carlo study of structural safety and applications			
Module IV			
Level-2 Reliability method: - Introduction-basic variables and failure	8	25	
surface-first order second moment methods like Hasofer and Linds	0	23	
method-nonnormal distributions-determination of B for present design-			
correlated variables.			
End Semester Exam			

Refuture Teenmologieur entv	ensity Ennakalalli 00 enas	101		
Course No.	Course Title	L-T-P-Credits	Year of Introduction	
06CE6342	Design Of Substructures	3-0-0-3	2015	
Pre-requisites	Nil			
Course Objectives				
To give the students an	understanding on			
• Ability to identify the soil-structure interaction				
• Ability to select suitable foundation for different types of structures				
• Should be able to analyse and design substructures				

Syllabus

Soil -Structure Interaction Contact pressure distribution beneath rigid and flexible footings Principles of design of foundations for reciprocating and impact type of machine –Vibration isolation – types and methods of isolation – isolating materials and their properties. Foundations in Expansive soils Bearing capacity of Footings subjected to Eccentric and Inclined Loading –Design of spread footing, column footing, combined footing. Mat foundations on cohesive and cohesion less soilPile Foundations Pile Groups –Efficiency of pile groups – Laterally loaded piles –Pile-raft system-Caissons and well foundations -Design Criteria

Course Outcome

- Basic understanding of type and selection of foundations
- To analyse and design foundations

Textbooks

- 1. Soil Mechanics & Foundation Engineering by B.C. Punmia.
- 2. Vibration of Soils & Foundations Richart Hall & Woods.

References

- 1. Analysis and Design of Substructures Swami Saran
- Donald P. Coduto, Foundation Design: Principles and Practices, Dorling Kinderseley (India) Pvt. Ltd., 2012

Course Plan			
Contents	Contact Hours	Sem. Exam Marks	
Module I			
Soil -Structure Interaction - Introduction to Soil -Structure interaction			

Kerala Technological University – Ernakulam – 06 Cluster	1	
problems -Contact pressure distribution - factors influencing Contact		
pressure distribution beneath rigid and flexible footings contact	14	25
pressure distribution beneath rafts - concentrically and eccentrically		
loaded		
Principles of design of foundations for reciprocating and impact type of		
machine – as per I.S. Codes. Vibration isolation – types and methods of		
isolation – isolating materials and their properties		
Foundations in Expansive soils - Problems in Expansive soils -		
Mechanism of swelling - Swell Pressure and Swelling potential -		
Heave foundation practices - Sand cushion - CNS cushion - under -		
reamed pile Foundations – Granular pile – anchor technique,		
stabilization of expansive soils.		
Module II		
Design and the of Fractional and instants of the Francisco and Instituted		
Bearing capacity of Footings subjected to Eccentric and Inclined		
Loading – Meyrhoff's and Hanse's theories – elastic settlement of		
Footings embedded in sands and clays of Infinite thickness – Footings		
on soils of Finite thickness-Schmertamaunn's method, Jaubu and	10	25
Morgenstern method		
Bearing capacity of foundation based on in-situ tests. Design of spread		
footing, column footing, combined footing.		
Mat foundations on cohesive and cohesion less soil- rigid beam		
analysis- Winkler model		
Module III		
Pile Foundations - Introduction - Estimation of pile capacity by static		
and dynamic formulae - Wave equation method of analysis of pile		
resistance - Load -Transfer method of estimating pile capacity -		
Settlement of single pile – Elastic methods.	10	25
Pile Groups - Consideration regarding spacing - Efficiency of pile		
groups - Stresses on underlying soil strata - Approximate analysis of		
pile groups -Settlement of pile groups- Pile caps -Pile load tests -		
Negative skin friction, Under reamed piles.		
Module IV		
Laterally loaded piles - Modulus of sub grade reaction method -	8	25
ultimate lateral resistance of piles. Load deflection prediction for		

Fnd Semester Even	
Terrachi'a analyzia	
Design - Design Criteria - Sinking of wells - lateral stability by	
Different shapes of wells - Components of wells - functions and	
Caissons and well foundations : Types of caissons - well foundation	
analysis, Pile-raft system, Solutions through influence charts	
laterally loaded piles, Subgrade reaction and elastic analysis, Interaction	
Kerala Technological University – Ernakulam – 06 Cluster	

Course No.	Course Title	L-T-P-Credits	Year of Introduction	
06CE6152	Structural Stability	3-0-0-3	2015	
Dro roquisitos	• Basic knowledge of S	trength of Materials		
r re-requisites	• Basic understanding of	Basic understanding of buckling, crushing and crippling		
\mathbf{C}				

Course Objectives

- To impart the need for stability concepts
- To explain buckling
- To demonstrate the critical load computations on different structural members using analytical, approximate and numerical methods

Syllabus

Introduction to stability analysis:-Stable, unstable and neutral equilibrium-Stability Criteria.-Euler's theory-assumptions and limitations - Energy approach and principles-Approximate methods-Rayleigh Ritz-Galerkin's method. General treatment of column:- Stability problem as an Eigen value problem-Short and long columns - Elastic instability of columns Stability of Beam columns:-Beam column equation- Energy method - Solutions for various end conditions-Stability of Frames:-Buckling of frames with and without sway for fixed and hinged end conditions-Energy approach Stability of plates:-Inplane and lateral loads-Introduction to torsional buckling, lateral buckling and inelastic buckling. Finite element application to stability analysis- Finite element stability analysis-Element stiffness matrix -Derivation of element stiffness matrix and geometric stiffness matrix for a beam element.

Course Outcome

On the successful completion of the course students are expected to

- Understand the physical interpretation of buckling
- Compute critical load on columns, beam columns, frames and plates
- Use equilibrium, energy, approximate and numerical methods for the computation of critical loads

Textbooks

- 1. Ziegler H, "Principles of structural stability", Blarsdell, Wallham, Mass, 1963.
- 2. Thompson J M, G W Hunt, "General stability of elastic stability", Wiley, New York.
- 3. Timoshenko, Gere, "Theory of elastic stability", McGraw Hill, New York.

References

- 1. Don O Brush, B O OAlmorth, Buckling of Bars, plates and shells,
- 2. Cox H L, The buckling of plates and shells, Macmillam, New York, 1963.
- 3. O C Zienkiewicz "Finite Element Method "fourth Edition, McGraw Hill.

Course Plan		
Contents	Contact Hours	Sem. Exam Marks

Module I		
Introduction to stability analysis:-Stable, unstable and neutral equilibrium-Stability Criteria. Fourth order Elastica – large deflection of bars differential equation for generalized bending problems-Euler's theory-assumptions and limitations -Introduction to methods for the determination of buckling loads on columns – Moment equilibrium method-Fourth order elastica - Energy approach and principles- Approximate methods-Rayleigh Ritz-Galerikin's method.	14	25
Module II		
General treatment of column:- Stability problem as an Eigen value problem–Short and long columms - Elastic instability of columns - Various modes of failure for various end conditions– both ends hinged–both ends fixed–one end fixed other end free– one end fixed other end hinged–Energy approach.	14	25
Module III		
Stability of Beam columns:-Beam column equation-Solution of		
differential equation for various lateral loads-udl and concentrated		
loads- Energy method - Solutions for various end conditions-bottom	16	30
fixed- bottom hinged -Horizontal compression members-		
Stability of Frames:-Buckling of frames with and without sway for		
fixed and hinged end conditions-Energy approach		
Module IV		
Stability of plates:-Inplane and lateral loads- Boundary conditions-		
Critical buckling pressure-Aspect ratio - Introduction to torsional		
buckling, lateral buckling and inelastic buckling.		
Finite element application to stability analysis- Finite element		
stability analysis-Element stiffness matrix -Geometric stiffness matrix-	12	20
Derivation of element stiffness matrix and geometric stiffness matrix	12	20
for a beam element.		
End Semester Exam		

Course No.	Course Title	L-T-P-Credits	Year of Introduction
06CE6252	High Rise Structures	3-0-0-3	2015
Pre-requisites	Nil		

Course Objectives

- To impart the ability to identify the structural systems for various combinations of gravity and horizontal loading considering their functional use and heights.
- To analyse the behaviour and drift capacities of various high rise structural forms

Syllabus

Design Criteria, Design Philosophy of High Rise structures, Loading –gravity loading- Dead and live load, live load reduction techniques-sequential loading, Impact loading,Wind Loading, Earthquake loading- Introduction to Performance based seismic design.Structural form, Floor systems, Rigid frame Structures- Determination of member forces by lateral loading- Braced frames- Infilled frames -Shear wall Structures- Wall frame structuresbehaviour of wall frames,

Tubular structures-framed tube structures-bundled tube structures-braced tube structures, Core structures, Outrigger-Braced Structures,foundations for tall structures-Modelling for analysis for high rise structures – Design for differential movement, creep and shrinkage effects, temperature effects and fire resistance

Course Outcome

On the successful completion of the course students are expected to

- Understand behaviour of common high rise structures under gravity and lateral loading
- Understand the drift capabilities of different structural forms

Textbooks

- Beedle.L.S., "Advances in Tall Buildings", CBS Publishers and Distributors, Delhi, 1986.
- Bungale S Taranath, Structural Analysis and Design of Tall Buildings, Tata McGraw Hill,1988.

References

1. Gupta.Y.P.,(Editor), Proceedings of National Seminar on High Rise Structures -Design and Construction Practices for Middle Level Cities, New Age International

Limited, New Delhi, 1995.

2. Lin T.Y and Stotes Burry D, "Structural Concepts and systems for Architects and Engineers", John Wiley, 1988.

Course Plan		
Contents	Contact Hours	Sem. Exam Marks
 Module I Definition of tall building-need for constructing tall building-Historic background-factors affecting growth. Design Criteria, Design Philosophy of High Rise structures, Materials Loading –gravity loading- Dead and live load, live load reduction techniques-sequential loading, Impact loading, Wind Loading, Wind Characteristics, Static and Dynamic wind effects, Analytical and wind tunnel experimental method, Earthquake loading-equivalent lateral force method, modal analysis,Introduction to Performance based seismic design 	14	25
Module II Structural form, Floor systems, Rigid frame Structures- rigid frame behaviour –approximate determination of member forces by gravity loading- two cycle moment distribution, approximate Determination of member forces by lateral loading- Portal method, Cantilever method, approximate analysis of drift, Braced frames- Types of bracings-behaviour of bracings-behaviour of braced bents method of member force analysis-method of drift analysis, Infilled frames- behaviour of infilled frames-stresses in infill-forces in frame- design of infill- design of frame- horizontal deflection.	10	25
Module III	8	25

wall systems, non proportionate wall systems- horizontal deflection,		
Coupled shear walls-behaviour of coupled wall structures-method of		
analysis, Wall frame structures- behaviour of wall frames,		
Tubular structures-framed tube structures-bundled tube structures-		
braced tube structures, Core structures, Outrigger-Braced Structures,		
Module IV		
Foundations for tall structures-pile foundation-mat foundation,		
Modelling for analysis for high rise structures – approximate analysis,		
accurate analysis and reduction techniques,		
Design for differential movement, creep and shrinkage effects,	10	25
temperature effects and fire resistance, Discussion of various Finite		
Element Packages for the analysis of High Rise Structures.		
End Semester Exam		

т

т

Course No.	Course Title	L-T-P-Credits	Year of Introduction
06CE6352	Experimental Stress Analysis	3-0-0-3 201	
Pre-requisites	Nil		
Course Objectiv	es		
• To impart t	he basic knowledge to design e	experiments related t	o stress analysis
problems			
• To familiariz	the methodology for conducting	laboratory and field e	xperiments
• To Analyse and interpret experimental observations and results			

Syllabus

The measurement system: Purpose Structure and Elements Dynamic Characteristics – zero order, first order and second order instruments. Measurement of Strain: Electrical resistance strain gauges - strain gauge bridges - Load cells different types – design of force transducers; Force balance pressure gauges –Potentiometers – different types; Linear variable differential transformer – principle and working. Accelerometers - Photo elasticity- Two dimensional photo elasticity. Moire fringe method- Non Destructive Testing Methods: Ultrasonic Methods; Hardness methods-Computer based data acquisition systems-Multi-Scale Analysis in Experimental Mechanics

Course Outcome

Capability to provide suitable instrumentation for conducting experiments, Acquire capacity to organize laboratory experiments for project and thesis works, Building capacity to conduct destructive and non-destructive experiments as a practicing engineer.

Textbooks

- 1. Dally JW & Riley WF Experimental stress Analysis McGraw Hill, 1991
- L.S.Srinath, M.R. Raghavan, K. Lingaiah, G. Gargesa, B.Pant, and K. Ramachandra, Experimental Stress Analysis, Tata McGraw Hill, 1984

References

- Nakra B.C & Chaudhry Instrumentation Measurement & Analysis Tata McCraw Hill, 2004
- Adams L F Engineering Measurements and Instrumentation English University Press, 1975.

Course Plan		
Contents	Contact Hours	Sem. Exam Marks

Kerala Technological University – Ernakulam – 06 Cluster		
Module I		
The measurement system: Purpose Structure and Elements -		
Characteristics of measurement system - Accuracy, Precision,		
Repeatability; Calibration – Standards and evaluation; Dynamic		
Characteristics – zero order, first order and second order instruments.		
Measurement of Strain: Electrical resistance strain gauges - Gauge	14	25
materials - gauge construction - gauge factor; Vibrating wire strain		-
gauges ; strain gauge bridges - Potentiometric and Wheatstone bridge -		
sensitivity Force transducers: Load cells different types - design of		
force transducers; Force balance pressure gauges - construction -		
sensitivity. Measurement of displacement: Potentiometers - different		
types; Linear variable differential transformer – principle and working.		
Module II		
Measurement of acceleration: Accelerometers - Characteristics of		
Accelerometers – typesdesign of accelerometers – calibration		
techniques - Integration technique for displacement from acceleration.	12	25
Photo elasticity- use of polarised light - Maxwell's law - polariscopes		
and their use; Photoelastic model materials ; Two dimensional photo		
elasticity - analysis and reduction of data. Moire fringe method-		
techniques and its use		
Module III		
Non Destructive Testing Methods: Ultrasonic Methods; Hardness		
methods - Rebound Hammer ; Core sampling technique; Pullout		
experiment; Detection of embedded reinforcement . Indicating &		
recording elements – Chart recorders – Cathode ray oscilloscope;	8	25
Computer based data acquisition systems – structure and components.		
Statistical Analysis - Errors in measurement - best estimate of true		
value Normal Distribution - Confidence level.		
Module IV		
Multi-Scale Analysis in Experimental Mechanics Trends in		
experimental mechanics, Discussion on selection of an experimental		
technique, Selection of an Experimental Technique Discussion on		
selection of an experimental technique contd., Review of solid	8	25

Kerala Technological University – Ernakulam – 06 Cluster			
mechanics, definition of free surface, ambiguity in associating the			
correct value of principal stress direction to the magnitude of the			
principal stress, Eigen value approach or use of Mohr's circle, Shear			
distribution in a three point bend specimen.			
End Semester Exam			

Course No.	Course Title	L-T-P-Credits	Year of Introduction	
06CE6062	Mini Project	0-0-4-2	2015	
Pre-requisites	STAAD Pro.,SAP 200	0,NISA		
Course Objectives	5			
To give the students on understanding on offective use of a suitable design/analysis software				

To give the students an understanding on effective use of a suitable design/analysis software package.

Syllabus

During the course of the second semester each student is expected to do a mini project. The student can execute this project by effective use of a suitable design/analysis software package. This may be as far as possible, a software studied as part of the curriculum or any other suitable package. In any case, at the end of the mini project the student should be well versed with the different aspects of the software. Each student must keep a project notebook, which shall be checked periodically throughout the semester, as part of evaluation. At the end of the training student shall submit a report in the prescribed format to the department.

Course Outcome

After the successful completion of the mini project, the students should be capable of conducting the analysis and design of structures and be well versed in the software package chosen.

Course No.	Course Title	L-T-P-Credits	Year of Introduction	
06CE6072	Structural Engineering Design Studio	0-0-2-1	2015	
Pre-requisites	Nil			
Course Objectives				
To instruct the student	s on			
Practical training	ng related to structural engineerin	g.		
 Ability to solve Structural analy	e stress analysis problems. ysis & design software SAP2000	& ANSYS		
Syllabus Linear Static Analysis	of Continuous Beams, Portal Fra	mes, Truss (2D and 3	3D), Multistoried	
Building.Loading : De	ad Load, Live Load, Wind Load	(IS: 875 Part 1 / Part	2 / Part 3),	
Earth Quake Load (IS	: 1893 Part 1) and its Combinatio	ons as per codal Provi	sions	
Linear Static Analysis of Continuous Beams, Portal Frames, Truss (2D and 3D), Plates (Plane				
Stress and Plane Strain)Linear dynamic analysis of Continuous Beams, Portal Frames				
Course Outcome To understand 	the concepts and principles invo	lved in structural eng	gineering	

• To equip the students to perform experimental work for project and thesis

Course No.	Course Title	L-T-P-Credits	Year of Introduction
06CE7111	Advanced Metal Structures	3-0-0-3	2015
Pre-requisites	Nil		
Course Objectives			

Course Objectives

- To make students to learn principles of Plastic analysis and design of steel structures
- Design of different components of industrial building and to detail these structures including the connection design.
- To understand the design of steel concrete composite elements.

Syllabus

Basics of plastic analysis, plastic moment capacity, beams portal frames-plastic design. Estimation of deflection. Connections, Design of bolted and welded connection – both simple and moment connections. Analysis and design of industrial buildings, loads – wind load, purlin, bracings etc. Basics of pre engineered buildings. Introduction to composite materials – shear connection, steel concrete composite member designs

Course Outcome

On successful completion of the course the student will be able to design steel industrial buildings including the connection design. The student will acquire skill in the area of plastic analysis of basic steel structures and in the design of steel-concrete composite structural elements

Textbooks

1. Design of steel structures, N Subbramanian, Oxford University Press, 2008

References

- R.P. Johnson, "Composite Structures of Steel & Concrete", Blackwell Scientific publications, UK, 1994.
- S.K. Duggal "Limit State Design of Steel Structures" McGraw Hill Education Private Ltd., New Delhi.
- Gaylord& Gaylord "Design of Steel Structures", Tata McGraw Hill, Education Edition 2012.
- 4. IS 800: 2007, IS 875: 1987

Course Plan			
Contents	Contact Hours	Sem. Exam Marks	
Module I Theorems of Plastic Analysis and Design: General methods of		25	

Course No.	Course No.Course TitleL-T-P-CreditsYear of Introduction					
06CE7211	Analysis Of Composite Structures	3-0-0-3	2	015		
Pre-requisites	Pre-requisites ^{Nil}					
Course Objectives						
The main objective of	f this course is to introduce th	e concept of comp	osite lami	nates and		
equip them to analyse	simple structures made of lam	inated composites.	Also to m	ake them		
understand about the th	neories underlying the analysis of	of laminated compo	site structu	ires.		
Syllabus						
Introduction to lamin	ated compositesand its manuf	acture. Various m	acromecha	nical and		
micro mechanical the	ories developed to analyse the	ese structures. Fai	lure analys	sis of the		
laminated composite. A	Analysis of laminated composite	e plates.				
Course Outcome						
The student will be abl	e to understand the basics of lar	ninated composites	, its behavi	our and		
will be able to do proje	ects involving laminated composi-	sites structures.				
Textbooks						
1. Mechanics of (Composite Materials by Autar.	K.Kaw, Second Ed	ition (200	5), Taylor		
and Francis Pre	ess.					
2. Mechanics of L	aminated Plates and Shells by J	.N.Reddy,CRC Pre	SS			
References						
1 Principles of C	omposite Material Mechanics b	v Ronald F Gibson				
2 Practical Analy	usis of Composite I aminates by	IN Reddy 1995	RC Press			
2. Fructural Anal	lysis of Laminated Anisotropic	Plates by James V	Whitney 1			
Droop	rysis of Lammated Amsonopic	Trates by James V	vinuey, 1	795, CKC		
Fless.	O		. J1 T.			
4. Mechanics of C	composite Material and Structu	ires by M.Muknop	adnyay, Ui	niversities		
Press						
5. Mechanics of C	Composite Materials by R.M.Jor	nes, CRC Press.				
	Course Plan	1		C		
	Contents		Contact	sem. Exam		
Hours Marks						
Module I						
IntroductionClassific	ation and Characteristics	of Composite				
Materials Rasic To	erminology Uses of Fibr	us Composites				
materials, Dasie IV		composites,	8	25		

Kerala Technological University – Ernakulam – 06 Cluster		<u> </u>
Application of composites, manufacture, advantages and limitations,		
Lamina and Laminate.		
Introduction to Micro mechanics, constituent materials and properties.		
Module II		
Laminate Analysis- Stress strain relations for lamina and laminate,		
Transformation of Elastic Constants, Classical Lamination Theory,	11	25
Extensional, Bending and Coupling Stiffness, Different Configurations		
and Corresponding Stiffness, Sheen Deformation Theories		
and Corresponding Sulfness, Snear Deformation Theories.		
Madrila III		
Failure of Laminates- Various failure theories- Maximum Stress theory,	11	25
Maximum Strain theory, Tsai-Hill Theory, Tsai- Wu Theory,	11	25
Comparison of failure theories Interlaminar failure of laminates		
Module IV		
Behaviour and Analysis of Laminated Plates Subjected to Bending,	12	25
Buckling and Vibrations using Classical Lamination Theory.		
End Semester Exam		1

Kerala Technologica	l University – Err	nakulam – 06 Cluster					
Course No.	Course No. Course Title L-T-P-Credits Year of Introduc						
06CE7311	Structur	al Optimization	ation 3-0-0-3 2015				
Pre-requisites	Nil						
Course Object To impart knowl	tives edge to the stud	dents on					
• The ability	y to identify th	e importance of optin	nization in the engine	eering field	1		
• Should be	able to use op	timization techniques	for real life time ap	plications			
Ability to	apply optimiz	ation concepts for sol	ving multi task appli	cations			
Syllabus Single Variable	Inconstrained	Optimisation Technic	ues – Optimality Cr	iteria Mult	i Variable		
Unconstrained	Optimisation 7	Fechniques Constrain	ned Optimisation 7	Techniques	;Classical		
methods –Linear	programming	problem: Standard fo	rm, Simplex method	; Indirect 1	nethods –		
Direct methods	Specialized C	Optimisation techniqu	es – Dynamic progr	amming, (Geometric		
programming, G	enetic Algorith	ms.					
Course Outco On the successfu	me l completion of	f the course students a	are expected to				
• Understa	nd various optim	mization methods					
• Understa	nd capabilities	of optimization progra	ammes				
• Understa	ıd , Analyse va	rious techniques and	apply them for real t	ime applic	ations		
Textbooks							
1. Rao S. S.	"Engineering	Optimisation – Theor	ry and Practice", New	w Age Inte	rnational.		
2. Deb, K.,	Optimisation f	for Engineering Desig	n – Algorithms and	examples"	, Prentice		
Hall.							
References							
1. Arora J S	. "Introduction	to Optimum Design"	, McGraw Hill				
2. Rajeev S and Krishnamoorthy C. S., "Discrete Optimisation of Structures using							
Genetic Algorithms", Journal of Structural Engineering, Vol. 118, No. 5, 1992, 1223-							
Course Plan							
	Contents Contact Hours Sem. Exam Marks						

Module I

Introduction -Problem formulation with examples;Single Variable

Kerala Technological University – Ernakulam – 06 Cluster		
Unconstrained Optimisation Techniques – Optimality		
Criteria;Bracketing methods- Unrestricted search, Exhaustive		
search;Region Elimination methods:-Interval Halving methods,	10	25
Dichotomous search, Fibonacci method, Golden section	12	25
method;Interpolation methods-Quadratic Interpolation method, Cubic		
Interpolation method;Gradient Based methods- Newton-Raphson		
method, Secant method, Bisection method.		
Module II		
Multi Variable Unconstrained Optimisation Techniques – Optimality Criteria; Unidirectional Search ; Direct Search methods – Random search, Grid search, Univariate method, Hooke's and Jeeves' pattern search method, Powell's conjugate direction method, Simplex method; Gradient based methods–Cauchy's (Steepest descent) method, Conjugate gradient (Fletcher–Reeves) method, Newton's method, Variable metric (DFP)method, BFGS method	10	25
Module III Constrained OptimisationTechniques;Classical methods – Direct substitution method, Constrained variation method, method of Lagrange multipliers, Kuhn–Tucker conditions. Linear programming problem: Standard form, Simplex method; Indirect methods –Elimination of constraints, Transformation techniques, and Penalty function method;Direct methods – Zoutendijk's method of feasible direction, Rosen's gradient Projection method.	10	25
Module IV Specialized Optimisation techniques – Dynamic programming, Geometric programming, Genetic Algorithms. End Semester Exam	10	25

Course No.		Course Title	L-T-P-Credits	Ye Intro	ar of duction
06CE7121		Concrete Material Science	3-0-0-3	20	015
Pre-requisite	S	Nil			
Course Obje	ctiv	ves			
• To have	an	understanding of the manufacture	e of concrete.		
• To analy	se t	the behaviour of concrete subject	ted to loads		
• To have	an	understanding of mix design of c	oncrete		
• To under	sta	nd various forms of concrete			
Syllabus Manufacture of	c	oncrete, rheological behaviour	of concrete, mix	design of	concrete,
durability of cor	cre	ete, special concretes			
Course Outco	om con	e apletion of the course the stude	ent will have in-dep	th knowled	dge about
constituents of	co	ncrete and manufacture proce	dure. The student	will have	thorough
understanding al	bou	it the mix design of concrete and	its behaviour when s	subjected t	o various
loads					
Textbooks					
1. Neville,	A.N	M. and Brooks, J.J.," CONCRET	E TECHNOLOGY",	ELBS .199	90.
2. Powers,	Т.	C., "THE PROPERTIES OF F	RESH CONCRETE	".JOHN W	VILEY &
SONS, I	SONS, INC. 1968.				
References					
1. Newman L.Hollid	, K ay.	K., "CONCRETE SYSTEMS in Elsevier Publishing Company. 19	COMPOSITE MAT 966.	TERIALS"	EDT BY.
 Nevine, Newman Constitute 	 Neville, A.M., "PROPERTIES OF CONCRETE", PITMAN. 1983 Newman, John & Choo, Ban Sang. "ADVANCED CONCRETE TECHNOLOGY - Constituent Materials" Elsevier 2003 				DLOGY -
4. Newman Concrete	 Newman, John &Choo, Ban Sang. "ADVANCED CONCRETE TECHNOLOGY - Concrete Properties" Elsevier 2003. 				OLOGY -
5. Wesche, K., "FLY ASH IN CONCRETE Properties and Performance." E & FN SPON 1991					
6. Popovics.S., "FUNDAMENTALS OF PORTLAND CEMENT CONCRETE: A Quantitative Approach VOL 1 FRESH CONCRETE" JOHN WILEY & SONS.1982.					
		Course Pla	an	[Com
		Contents		Contact Hours	Sem. Exam Marks
Module I	_				

Kerala Technological U	niversity – Ernakulam – 06 Cluster
------------------------	------------------------------------

Kerala Technological University – Ernakulam – 06 Cluster		
properties; cement chemistry- Types of cements; special cements-		
Aggregates- Mineralogy; properties, tests and standards-Chemical and		
mineral admixtures-Water reducers, air entrainers, set controllers,		
specialty admixtures - structure properties, and effects on concrete		
properties- supplementary cementing materials and pozzolans- Fly ash,	12	25
blast furnace slag, silica fume, and metakaolin - their production,		
properties, and effects on concrete properties-Other mineral additives -		
reactive and inert-Reinforcements and admixtures. Behaviour of		
Concrete - Modern trends in concrete manufacture and placement		
techniques - Rheological behaviour of fresh concrete and hardened		
concrete - Resistance to static and dynamic loads.		
Module II		
Mix Design -Basic principles- Specifications - Design of concrete	0	25
mixes by IS code method - ACI method - Road Note No:4 method-new	9	25
approaches based on rheology and particle packing		
Module III		
Compressive strength and parameters affecting it-Tensile strength -		
direct and indirect: Modulus of elasticity and Poisson's ratio-Stress		
strain response of concrete-Testing of Concrete - Non-destructive		
testing and quality control – Durability -Introduction to durability:		
relation between durability and permeability. Chemical attack of	11	25
concrete: corrosion of steel rehars: other durability issues-Corrosion		
protection and fire resistant Creen and relayation - parameters affecting:		
Shrinkage of concrete - types and significance-Parameters affecting		
shrinkage of concrete - types and significance-farameters affecting		
Modulo IV		
Special Concretes-Pre-cast concrete -Under water concrete - Pump		
concrete - Polymer concrete - Composites and fibre reinforced		
concrete.Properties and applications of: High strength - high	10	25
performance concrete, reactive powder concrete-Lightweight,		
heavyweight, and mass concrete; fibre reinforced concrete; self-		
compacting concrete; shotcrete; other special concretes.		
End Semester Exam	I	

Course No.	Course Title	L-T-P-Credits	Year of Introduction
06CE7221	Engineering Fracture Mechanics	3-0-0-3	2015
Pre-requisites	Nil		

Course Objectives

To impart knowledge to the students Fracture Mechanics and its applications to Structural Engineering problems.

Syllabus

Significance of fracture mechanics, Griffith energy balance approach- Fracture toughness, Influence of material behaviour, I, II & III modes, Mixed mode problems. Linear Elastic Fracture Mechanics (LEFM) Elastic stress field approach. Crack tip plasticity: Irwin plastic zone size, Energy Balance Approach: Griffith energy balance approach, LEFM Testing: Plane strain and plane stress fracture toughness testing, Elastic plastic fracture mechanics (EPFM):, J–integral, Crackopening displacement (COD) approach, COD design curve, Relation between J and COD, Fatigue Crack Growth: Description of fatigue crack growth using stress intensity factor, Effects of stress ratio and crack tip plasticity – crack closure, Mixed mode failure Initiation of initial crack propagation direction in ductile materials under plane stress conditions-Product of principal stresses.

Course Outcome

On the successful completion of the course students are expected tounderstand fracture mechanics which has wide applications in Structural Engineering.

Textbooks

- 1. Ewalds, H.L. & Wanhill, R.J.H., "Fracture Mechanics" Edward Arnold
- 2. Ed L. Elfgren and S.P. Shah, "Analysis of Concrete Structure by Fracture Mechanics", Proc of Rilem Workshop, Chapman and Hall, London.

References

1. David Broek, "Elementary Engineering Fracture Mechanics", Sijthoff and Noordhaff Alphen Aan Den Rijn, The Netherlands.

Course Plan		
Contents	Contact Hours	Sem. Exam Marks
Module I		
Introduction: Significance of fracture mechanics, Griffith energy		
balance approach, Irwin's modification to the Griffith theory, Stress		
intensity approach, Crack tip plasticity, Fracture toughness, sub-critical		

Kerala Technological University – Ernakulam – 06 Cluster	1	
crack growth, Influence of material behaviour, I, II & III modes, Mixed		
mode problems.	12	25
Linear Elastic Fracture Mechanics (LEFM): Elastic stress field		
approach, Mode I elasticstress field equations, Expressions for stresses		
and strains in the crack tip region, Finitespecimen width, Superposition		
of stress intensity factors (SIF), SIF solutions for wellknown problems		
such as centre cracked plate, single edge notched plate and embedded		
elliptical cracks		
Module II		
Crack tip plasticity: Irwin plastic zone size, Dugdale approach, Shape		
of plastic zone, State of stress in the crack tip region, Influence of stress		
state on fracture behaviour. Energy Balance Approach: Griffith		
energy balance approach, Relations for practical use, Determination of		
SIF from compliance, Slow stable crack growth and R-curve	12	25
concept, Description of crack resistance.		
LEFM Testing: Plane strain and plane stress fracture toughness		
testing, Determination of R-curves, Effects of yield strength and		
specimen thickness on fracture toughness, Practical use of fracture		
toughness and R-curve data.		
Module III		
Elastic plastic fracture mechanics (EPFM): Development of EPFM,		
J-integral, Crackopening displacement (COD) approach, COD design		
curve, Relation between J and COD, Tearing modulus concept,		
Standard JIc test and COD test.		25
Fatigue Crack Growth: Description of fatigue crack growth using	8	25
stress intensity factor, Effects of stress ratio and crack tip plasticity –		
crack closure, Prediction of fatigue crackgrowth under constant		
amplitude and variable amplitude loading, Fatigue crack growth from		
notches – the short crack problem		
Module IV		
Mixed mode fialure: Introduction to crack initiation and propagation		
in material which are brittle or ductile. Factor envelope for material		
under mixed mode stress intensity factors. Test results for various		
materials.		

Initiation of initial crack propagation direction in ductile materials		
under plane stress conditions. Angled crack problem. Elasto-plastic		
boundary around a cracked tip. A discussion on various criteria to		
determine the initial crack propagation direction. like total strain energy	10	25
density, dilatational strain energy density, Distortional strain energy		
density, Product of principal stresses, The various criteria related to the		
above. The application of above criteria along the Elasto-plastic		
boundary, the influence of crack angle on the crack propagation		
direction.		
End Semester Exam		

Course No.	Course Title	L-T-P-Credits	Yea Intro	ar of duction
06CE7321	Forensic Engineering	3-0-0-3	20	015
Pre-requisites	Nil		•	
Course Objectives To impart knowledge	to the students forensic engin	eering and its applic	cations to	Structural
Engineering problems				
Syllabus Forensic Engineering	-Structural Health Monitorin	g Failure Analysis	Decision	Criteria -
Failure of Structures-	Environmental Problems and N	Natural Hazards. Cau	uses of det	erioration
in concrete and steel s	structures. Diagnosis and asses	ssment of deteriorati	on, ,non d	estructive
tests-Methods of repa	air of cracks, Modern Techni	iques of Retrofitting	g. Structu	ral health
monitoring approache	s - Sensors, Fiber-optic sens	ors Wireless smart	sensors V	Vibration-
Bridge SHM application	ons-Forensics Case Studies – A	Applications of NDT	with Anal	ytical and
Destructive Methods.				
Course Outcome On the successful con engineering which has	Course Outcome On the successful completion of the course students are expected tounderstand forensic engineering which has wide applications in Structural Engineering			
Textbooks				
1. Sidnev M Johr	nson. Deterioration. Maintenar	nce and Repairs of S	Structures.	McGraw
Hill Book Com	pany, New York	I a state		
2 Dovkaminatzky	v Design and Construction Fa	iluras, Galgotia Pub	lication	NawDalhi
Iacob Field and	Kennenth L Carper Structura	l Failures, Wiley Fu	rope	NewDenn
Jacob Fleid and Keinlehul L Carper, Subclural Fahules, whey Europe				
Leach Field and	Warn outh L. Compon. Structure	l Esilanes Wiley En		
	Rennentin L Carper, Structura	I Failures, whey Eu	rope.	
	Course Plan	n		Sem
	Contents		Contact Hours	Exam Marks
Module I				
Forensic Engineering –Structural Health Monitoring Evaluation of				
Deterioration in Service Post-Failure Analysis Decision Criteria for				
Evaluation/Repair/Rehabilitation. Condition Assessment of Existing				
Structures 14 25				
Failure of Structures: 1	Failure of Structures: Review of the construction theory – performance			
problems – responsib	ility and accountability - cau	uses of distress in		
structural members -	design and material deficienci	es – over loading.		

Kerala Technological University – Ernakulam – 06 Cluster			
Environmental Problems and Natural Hazards. Causes of deterioration			
in concrete and steel structures. Preventive measures, maintenance and			
inspection.			
Module II			
Diagnosis and assessment of deterioration, visual inspection, non			
destructive tests, ultrasonic pulse velocity method, rebound hammer	6	25	
method, pull out tests, Bremer test, Windsor probe test, crack detection			
techniques, etc.			
Module III			
Methods of repair of cracks, repairing spalling and disintegration,			
repairing concrete floors and pavements. Repairing of corrosion	10	25	
damage of reinforced concrete. Modern Techniques of Retrofitting.			
Strengthening by pre-stressing. Repair of steel structures.			
Module IV			
Structural health monitoring approaches - Sensors, data acquisition, and			
signal processing Fiber-optic sensors Wireless smart sensors Vibration-	10	25	
based structural health monitoring (SHM) Bridge SHM applications	12	25	
Forensics Case Studies - Applications of NDT with Analytical and			
Destructive Methods			
End Semester Exam			

Course No.	Course Title	L-T-P-Credits	Year of Introduction
06CE7031	Seminar II	0-0-2-2	2015
Pre-requisites	Nil		
Course Objectives	5		

Syllabus

Students have to register for the seminar and select a topic in consultation with any faculty Member offering courses for the programme. The paper should be on a recent advancement/trend in the field of structural engineering. A detailed write-up on the topic of the seminar is to be prepared in the prescribed format given by the Department. The seminar shall be of 30 minutes duration and a committee with the Head of the department as the chairman and two faculty members from the department as members shall evaluate the seminar based on the coverage of the topic, presentation and ability to answer the questions put forward by the committee.

Course Outcome

Course No.	Course Title	L-T-P-Credits	Year of Introduction
06CE7041	Project (Phase 1)	0-0-8-6	2015
Pre-requisites	Nil		
Course Objectives			

Syllabus

Normally students are expected to do the project within the college. However they are permitted to do the project in an industry or in a government research institute under a qualified supervisor from that organization. Progress of the project work is to be evaluated at the end of the third semester. For this a committee headed by the head of the department with two other faculty members in the area of the project, of which one shall be the project supervisor. If the project is done outside the college, (provision is available for them only in the fourth semester), the external supervisor associated with the student will also be a member of the committee. Final evaluation of the project will be taken up only on completion of the project in the fourth semester. This shall be done by a committee constituted for the purpose by the principal of the college. The concerned head of the department shall be the chairman of this committee. It shall have two senior faculty members from the same department, project supervisor and the external supervisor, if any, of the student and an external expert either from an academic/R&D organization or from Industry as members. Final project grading shall take into account the progress evaluation done in the third semester and the project evaluation in the fourth semester. If the quantum of work done by the candidate is found to be unsatisfactory, the committee may extend the duration of the project up to one more semester, giving reasons for this in writing to the student. Normally further extension will not be granted and there shall be no provision to register again for the project.

M.Tech projects should be socially relevant and research oriented ones. Each student is expected to do an individual project. The project work is carried out in two phases – Phase I in III semester and Phase II in IV semester.Project work is to be evaluated both in the third and the fourth semesters. Based on these evaluations the grade is finalised in the fourth semester.

Project evaluation weights shall be as follows:-

For convenience the marks are allotted as follows.

Total marks for the Project: 150

In the 3rd Semester:- Marks:50

Project Progress evaluation:

Progress evaluation by the Project Supervisor : 20 Marks

Presentation and evaluation by the committee : 30 Marks

Course Outcome

On completion of the project (Phase 1) the student is expected to conduct preliminary work

and review previous literatures on a relevant and research oriented topic to be continued in

the following semester.

Course No.	Course Title	L-T-P-Credits	Year of Introduction	
06CE7012	Project (Phase 2)	0-0-21-12	2015	
Pre-requisites				
Course Objectives				
Syllabus Phase II of the project	work shall be in contin	uation of Phase I only.	At the completion of a	
project the student will submit a project report, which will be evaluated (end semester				
assessment) by duly a	ppointed examiner(s).	This evaluation will be	based on the project	
report and a viva voce	examination on the pro-	ject. The method of ass	essment for Phase II is	
as given:				
In the 4th Semester:- M	larks:100			
Project evaluation by the	he supervisor/s : 30 Mar	ks		
Evaluation by the Exte	rnal expert : 30 Marks			
Presentation & evaluation by the Committee : 40 Marks				
Course Outcome At the successful completion of a project, the student will be well versed in the work and				

should submit a report of the work done.

KERALA TECHNOLOGICAL UNIVERSITY

SCHEME AND SYLLABUS

FOR

M. Tech. DEGREE PROGRAMME

IN

MECHANICAL ENGINEERING

WITH SPECIALIZATION

COMPUTER INTEGRATED MANUFACTURING

CLUSTER 05 (ERNAKULAM II)

KERALA TECHNOLOGICAL UNIVERSITY CET Campus, Thiruvananthapuram Kerala, India -695016

(2015 ADMISSION ONWARDS)

KERALA TECHNOLOGICAL UNIVERSITY SCHEME AND SYLLABUS FOR M. Tech. DEGREE PROGRAMME Branch: MECHANICAL ENGINEERING Specialization: Computer Integrated Manufacturing Semester 1 (Credits: 21)

Evom				Internal	End Se	mester Exam	Crod
Slot	Course No:	Name	L- T - P	Marks	Marks	Duration (hrs)	its
А	05ME 6301	Advanced Engineering Materials and Processing	3-1-0	40	60	3	4
В	05ME 6303	Computer Aided Process Planning and Control	3-1-0	40	60	3	4
С	05ME 6305	Computer Aided Design in Manufacturing	3-1-0	40	60	3	4
D	05ME 6307	Automation and Control Systems	3-0-0	40	60	3	3
E	05ME 631X	Elective-I	3-0-0	40	60	3	3
	05ME 6377	Research Methodology	0-2-0	100	0	0	2
	05ME 6391	Computer Integrated Manufacturing Laboratory – I	0-0-2	100	0	0	1
						21	

Elective I

05ME 6311	Metrology and Computer Aided Inspection
05ME 6313	Quality Engineering and Management
05ME 6315	Rapid Prototyping

Semester 2 (Credits: 21)

Evom				Internal	End Seme	ster Exam	
Slot	Course No:	Name	L- T - P	Marks	Marks	Duration (hrs)	Credits
А	05ME 6302	Computer Aided Manufacturing	3-1-0	40	60	3	4
В	05ME 6304	Industrial Automation	3-0-0	40	60	3	3
C	05ME 6306	Flexible Manufacturing Systems	3-0-0	40	60	3	3
D	05ME 632X	Elective-II	3-0-0	40	60	3	3
Е	05ME 633X	Elective-III	3-0-0	40	60	3	3
	05ME 6366	Seminar-I	0-0-2	100	0	0	2
	05ME 6388	Mini Project	0-0-4	100	0	0	2
	05ME 6392	Computer Integrated Manufacturing	0-0-2	100	0	0	1

	Laboratory - II			
			2	1

Elective II

05ME 6322	Supply Chain Management
05ME 6324	Composite Material Technology
05ME 6326	Simulation of Manufacturing Systems

Elective III

05ME 6332	Industrial Robotics
05ME 6334	Precision and Micromachining
05ME 6336	Micro and Nano Manufacturing

Semester 3 (Credits: 14)

Α	05ME 734X	Elective-IV	3-0-0	40	60	3	3
В	05ME 735X	Elective-V	3-0-0	40	60	3	3
	05ME 7367	Seminar-II	0-0-2	100	0	0	2
	05ME 7387	Project (Phase 1)	0-0-12	50	0	0	6
						1	4

Elective IV

05ME 7341	Production Scheduling
05ME 7343	Design for manufacturing and Assembly
05ME 7345	Lean Manufacturing

Elective V

05ME7351	Sustainable Manufacturing
05ME7353	Finite Element Method
05ME7355	Artificial Intelligence

Semester 4 (Credits: 12)

Exam Slot	Course No:	Name	L- T - P	Internal Marks	End Semester Exam	Credits
	05ME 7388	Project (Phase 2)	0-0-21	70	30	12

12 Total: 68

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05ME 6301	ADVANCED ENGINEERING MATERIALS AND PROCESSING	4-0-0-4	2015

COURSE OBJECTIVES

- 1. To analyze the structure and properties of intermatallics, maraging steel and super alloys.
- 2. To enable students to be more aware of the properties of advanced engineering materials such as composites and biomaterials and select the materials for various applications.

COURSE OUTCOMES

Upon completion of this course work, students should be

- 1. Familiar with a selection of advanced engineering materials and related processing techniques.
- 2. Aware of the scientific and technological aspects of these materials and processes.
- 3. Able to integrate the scientific and engineering principles underlying the four major elements: structure, properties, processing and performance related to material systems appropriate to the field.

MODULE	COURSE CONTENT (36 hrs)	HRS
	Atomic structure, crystallography, imperfections, modes of plastic deformation, Frank and Read source, need of alloying, The Iron–Iron Carbide (Fe–Fe3C) phase diagram, heat treatment, strengthening mechanisms (Review only)	
I	Intermetallics: property prediction, phase diagrams, Electron (or Hume - Rothery) compounds and Laves phase, AB ₂ structures.	9
	Maraging steel: History of maraging steel development - reaction in austenite - reaction in martensite - austenite to martensite transformation – effect of aging time - effects of maraging with cobalt, cobalt free, molybdenum and other alloying elements - variation of mechanical	

	properties: yield strength, hardness and fatigue - effect of precipitate size -	
	fracture toughness and weldability, hardness variation in welded zone -	
	manufacturing steps of rings- applications - special advantages and	
	limitations - comparison of production sequence with high tensile steel.	
	High temperature super alloys: Characteristics of high-temperature materials- instances of superalloy component failures, gas turbine engine requirement- selection of materials for high-temperature applications,Larson–Miller approach for creep performance – justification for Nickel as a high-temperature material	
	Physical metallurgy of nickel and its alloys: Composition-microstructure	
	relationships in nickel alloys, FCC, gamma prime, gamma double prime	
	phase, TCP phases, carbide and boride phases, grain-boundary carbides -	
	Defects in Ni and its alloys - vacancies, shockley partial dislocations,	
	superdislocations, stacking fault and antiphase boundary.	
Π	 Strengthening effects in nickel alloys: strengthening by particles of the gamma prime phase, temperature dependence of strengthening, yielding effect in gamma prime alloys - creep behavior of nickel alloys: nickel and creep strengthening in nickel alloys by solid-solution strengthening and precipitation hardening. Molybdenum: Ferromolybdenum -production of molybdenum – properties - effect of molybdenum alloying on hot strength, corrosion resistance, and toughness – applications - TZM, TZC. Niobium: Production of niobium - niobium alloys - niobium in steel making Ni alloys characteristics and applications Biomaterials: - Requirements for biomaterials-Dental materials: Cavity fillers etcThe structure of hone and hone fracture-Replacement joints- 	9
	fillers etc -The structure of bone and bone fracture-Replacement joints-	
	Reconstructive surgery-Biomaterials for heart repair Modern physical	
	metallurgy and materials engineering.	
----	---	----
	Titanium: Pasia Proportios Crystal Structura Electic Proportios	
	Deformation Modes - binary phase diagram classification based on	
	alloving elements Basic Hardening Mechanisms: Alpha Phase Beta Phase	
	- Sponge Production- effect of forging temperature and forging pressure -	
	closed die forgings - nickling of titanium - scrap recycling - closed die	
	forging - problems in machining Titanium - shear hands - Heat treatment	
	and microstructure obtainable - welding of titanium and defects.	
ш	Detailed discussions on Vacuum induction melting (VIM) - Conditions for freckle formation - - Vacuum arc remelting (VAR), Control, and structure developed, melt-	10
	related defects -electroslagremelting (ESR), electrode quality melt-related	
	defects - triple melting, super alloy cleanliness.	
	Ceramics: AX, AmXp, AmBmXp type crystal structures – imperfections in	
	ceramics, stoichiometric defect reactions – stress strain behavior – applications.	
	Composites: Introduction to composites, constituent materials and	
	reinforcing fibers -properties and characteristics glass, carbon, aramid,	
	ceramic, silicon carbide, boron fibers - discontinuous and continuous	
	reinforcements for metal-matrix composites -metallic matrices: aluminum	
IV	alloys; low-density, high-modulus alloys; high-temperature aluminum;	8
	titanium alloys - ceramic matrices - carbon matrices - interfaces and	
	interphases - interphase thermodynamics -surface modification strategies -	
	interphase effects on fiber-matrix adhesion - interphase and fiber-matrix	
	adhesion effects on composite mechanical properties	
	END SEMESTER EXAM (ALL Modules)	

- 1. Callister William. D., "Material science and engineering", John Wiley.
- 2. Westbrook J. H., "Intermetallic compounds", John Wiley.
- 3. American Society for Metals, "Source book of Maraging Steels".
- Richard K. Wilson (Editor), "Maraging steels recent development and applications", TMS Publication.
- 5. Roger C. Reed, "The Superalloys Fundamentals and Applications", Cambridge university press.
- 6. Matthew J. Donachie, Stephen J. Donachie, Superalloys, "A Technical Guide", ASM International.
- 7. Krishnan K Chawla, "Composite Materials: Science and Engineering", Springer.
- 8. ASM hand book volume 21 -composites
- 9. Thermodynamics & Heat transfer, YunusCengel.

COURSE C	CODE	COURSE NAME	L-T-P-C	YEAR	•
05ME 6	303	COMPUTER AIDED PROCESS PLANNING AND CONTROL	4-0-0-4	2015	
COURSE C)BJECT	TIVES			
Upon compl	letion of	this course the student will be able to			
1. Unde CAP CAP	erstand P, classi P.	what is process planning and CAPP, k fy the various methods of CAPP, and u	now the vari nderstand the	ous steps invo feature recogn	lved in ition in
2. Unde	erstand	the components of manufacturing system	s.		
3. Under syste	erstand v ems in C	various process planning systems and in APP.	nplementation	n of various int	elligent
COURSE C	DUTCO	MES			
1. Fund	lamental	understanding of computer aided proces	s planning sy	stems.	
2. Unde	erstandir	g the structures, basic components of ma	nufacturing s	ystems.	
3. Unde	erstandir	g fundamental of intelligent systems in C	CAPP.		
MODULE		COURSE CONTENT (3	6 hrs)		HRS
	INTR(DDUCTION:	r Cuolo Pro	page Planning	
		the of Process Planning in Manufacturing	g Cycle - Fic		
	and Pro	Soluction Planning – Technology and Me	thods, Process	Planning and	
_	Design	, Concurrent Engineering, Aggrega	te Productio	on Planning-	
I	Produc	tion planning defined -Short-term prod	uction plann	ing -Multiple-	9
	objecti	ve production planning, Product mix an	nalysis, Lot-s	size analysis -	
	MRP a	and machine loading, Long-term produ	ction plannin	g, Production	
	forecas	ting. Production Scheduling - Scope	of production	on scheduling	
	operati	ons.			
		INTERNAL TEST 1 (Modu	le 1)		
	PART	DESIGN REPRESENTATION:			
Π	Techni	cal Drawings, Geometric Tolerances, 7	Folerancing	n Production	9
	1 centil	car Drawings, Geometric Tolerallees,			

	Process Capability and Process selection, Experience-Based Planning,	
	Components of a manufacturing system, Group Technology, Parts	
	Classification and Coding, Features of Parts Classification and Coding	
	Systems, OPITZ system, MICLASS system, Production Flow Analysis,	
	Cellular Manufacturing, Application Considerations in Group Technology,	
	INTERNAL TEST 2 (Module 2)	
	COMPUTER AIDED PROCESS PLANNING SYSTEMS:	
	Computer-Aided Process Planning, Retrieval CAPP Systems, Generative	
	CAPP Systems, Structure of a Process Planning Software, Operation of a	
	Typical Computer Aided Process Planning Software, Implementation	
III	Considerations of a Process planning system, Process Planning Systems,	10
	CAM-I CAPP, MIPLAN and MULTICAPP, Scope and problems of	
	process planning - Process design, Operation design. Optimum routing	
	analysis, Line balancing - Layout Planning and Design. Scope and	
	problems of layout planning - Systematic layout planning (SLP)	
	INTELLIGENT PROCESS PLANNING:	
	Intelligent Manufacturing and Manufacturing Intelligence, Computational	
	Intelligence, Artificial Neural Networks, Evolutionary Computation,	
IV	Group Technology in Intelligent Manufacturing, Intelligent Process	8
	Planning: Intelligent CAPP, Application of GA to Computer-Aided	
	Process Planning, The Implementation of ANN in CAPP System, The Use	
	of Case-Based Reasoning in CAPP, Multi-Agent-Based CAPP.	
	END SEMESTER EXAM (ALL Modules)	
REFERE	NCES:	
1 Ci	dean Halavi "Process and Operation Planning" Davised Edition of The Dring	inlag of

- Gideon Halevi, "Process and Operation Planning" Revised Edition of The Principles of Process Planning: A Logical Approach, Kluwer Academic Publishers, 2003.
- 2. Groover M. P, "Automation, production systems and computer integrated

manufacturing", Prentice Hall India (P) Ltd., 2002.

- Radhakrishnan P., Subramanyan S., Raju V., "CAD/CAM/CIM", 3rd edition, New Age International, 2008.
- 4. Sadhu Singh, "Computer Aided Design and Manufacturing", 5th edition, khanna publishers, 2010.
- 5. Rao P. N., "CAD/CAM: Principles and Applications", Tata McGraw Hill, 2004.
- Zude Zhou, Huaiqing Wang, Ping Lou, "Manufacturing Intelligence for Industrial Engineering: Methods for System Self-Organization, Learning, and Adaptation", Engineering Science Reference, 2010.
- 7. A. K Gupta, S. K. Arora, "Industrial automation and robotics", Laxmi Publications, 2009.
- R. Panneerselvam, "Production and Operations management", Prentice-Hall Of India Pvt. Limited, 2006

COURSE CODE	COURSE NAME	L-T-P-C	YEAR	
05ME 6305	COMPUTER AIDED DESIGN IN MANUFACTURING	3-0-0-3	2015	
COURSE OBJECTIVES				

- 1. To provide an overview of the CAD systems
- 2. To discuss computer graphics and graphics transformations involved in CAD.
- 3. To introduce the concepts of geometric modeling and parameter design.
- 4. To provide an introduction to Finite Element Analysis.

COURSE OUTCOMES

- 1. Understand the use of computer graphics and geometric modelling techniques in CAD.
- 2. Understand the use of Finite Element Analysis in CAD applications.

MODULE	COURSE CONTENT (36 hrs)	HRS

	Overview of CAD systems: Conventional and computer aided design		
	processes – advantages and disadvantage – CAD hardware and software –		
	analytical and graphics packages – networking of CAD systems		
Ŧ	analytical and graphics packages increasing of Crub systems.		
I	Computer graphics and graphics transformation: Image processing -	9	
	transport of graphics data - graphic standards - display and viewing -		
	transformations – customizing graphics softwares.		
	Geometric modeling: Wire frame surface and solid modeling –		
	applications and advantages _Boolean operations _ half-spaces _ filleting		
	of edges of solids boundary representations constructive solid	0	
II	of edges of solids – boundary representations – constructive solid	9	
	geometry – sweep representation		
	Parametric design and object representation: Types of co-ordinate system -		
	parametric design - definition and advantages - parametric representation		
	of analytic and synthetic curves - parametric representation of surfaces and	10	
111	solids – manipulations.	10	
	Mechanical assembly – mass property calculation.		
	Introduction to finite element analysis: Basic steps in finite element		
	problems formulation – element type and characteristics – element shapes		
IV	– co-ordinate systems – 1D link elements and beam elements – shape	8	
	functions – stiffness matrices – direct stiffness method – 2 D elements –		
	axisymmetric elements – plane stress problem – higher order elements.		
	END SEMESTER EXAM (ALL Modules)		
REFERENCES:			
1. New man & Sproull, Principles of interactive graphics, McGraw Hill.			

- C. S. Krishnamoorthy and S. Rajeev, Computer aided design, Narosa Publishing House, 1991
- 3. Ibrahim Zeid, CAD/CAM theory and practice, McGraw Hill Inc, 1991

- Vera B. Anand, Computer graphics and geometric modelling for engineers, John Wiley & Sons Inc., 1993
- 5. Sandhu Singh, Computer aided design and manufacturing, Khanna Publishers, 1998
- 6. User's Manuals for Ansys, Adams, Pro/Engineer, Cadds 5 and Autocadsoftwares.
- 7. R. D. Cook, Concepts and applications of finite element analysis
- 8. Daryl L. Logan, A first course in the finite element method
- 9. David V. Hutton, Fundamentals of finite element analysis
- 10. David F. Rogers and J. Alan Adams, Mathematical elements for computer graphics, Second Edition, McGraw Hill, 1990

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05ME 6307	AUTOMATION AND CONTROL SYSTEMS	3-0-0-3	2015

COURSE OBJECTIVES

Upon completion of this course the student will be able to accomplish the following Competencies

- 1. Explain the General function of Industrial Automation, list basic Devices in Automated systems.
- 2. Students will understand the automation strategies in manufacturing plants.
- 3. Identify Safety in Industrial Automation, and types of industrial sensors

COURSE OUTCOMES

- 4. Fundamental understanding of dynamical behavior of processes and systems, advanced automation function.
- 5. Understanding the structures, basic components and terminology of control systems, the difference between open-loop and closed-loop control.

6. Understanding fundamentals of automated assembly lines.

MODULE	COURSE CONTENT (36 hrs)	HRS
Ι	Automation: Introduction to automation: definition, types of automation, strategies merits and criticism – manufacturing plants and operations – automation strategies – basic elements of automated system – advanced automation functions – levels of automations – automated production lines – economic and social issues .	9
Π	Production automation: Industrial control systems – process layout for automation –discrete manufacturing industries – continuous and discrete control systems – overview of computer process control – fundamentals of automated assembly, parts feeding devices – production flow analysis: general terminology and analysis, analysis of transfer lines without storage, partial automation.	9
ш	Hardware Components for Automation and Process Control: Sensors- Actuators-Electric Motors, Other types of actuators-Analog to digital convertors-Digital to analog Convertors-Input/output devices for discrete data- Contact input/output interfaces, Pulse counters and generators.	10
IV	Control systems: Servomechanisms – digital computer control – controller components – hydraulic systems – pneumatic systems – stepper motor-transfer functions – block diagram algebra-– signal flow graphs-Feedback and non-feedback systems .	8

- 1. Groover M. P, "Automation, production systems and computer integrated manufacturing", Prentice Hall India (P) Ltd., 2002
- 2. Gopal M., "Control systems principles and design", TMH, New Delhi
- Nagrath I. J. and Gopal M., "Control system engineering", New Age International, New Delhi
- 4. Shinsky, "Process control system", PHI, 2000
- 5. Troitskey A., "Principles of automation and automated production", Mir Publishers, 1976

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05ME 6311	METROLOGY AND COMPUTER AIDED INSPECTION	3-0-0-3	2015

COURSE OBJECTIVES

- 1. To familiarize the basic concepts of metrology, use of statistics in metrology and types of errors in precision measurements.
- 2. To acquaint the students with the metrology of gears and methods of measurement in testing of machine tools and measurement of gears.
- 3. To discuss Computer Aided Inspection (CAI) techniques.

COURSE OUTCOMES

Upon completion of this course work, students should have:

- 1. Have up to date knowledge about Metrology and Inspection and their applications in industries.
- 2. Understand the role of computers in metrology.

MODULE	COURSE CONTENT (36 hrs)	HRS

		Type of errors:-catastrophic errors, alignment errors, combined sine and	
		cosine errors, alignment of spherical end gauges; optical principles of	
		projector, microscope, telescope, collimator, autocollimator and optical flat	
		etc ; errors due to ambient conditions and errors due to elastic	
		deformation; effects of supports; scale, reading, measuring errors;	
		compound errors.	
	Ŧ	Mathematical concepts in metrology: - statistical concepts, limiting mean,	
	1	range, variance and standard deviation, normal distribution, confidence	9
		interval and limits, precision and accuracy, statistical analysis of	
		measurement data and control chart techniques.	
		Pneumatic comparators: - general design features, air gauge circuits, air	
		gauge tooling, amplification selection, air gauge mastering, automatic	
		gauge tooming, amplification beteened, and assembly	
		gauging for inspection, machine control and assembly.	
		Measurement of gears:-involute curve, involute function, standard	
		proportions, helical gears, under cutting in gear teeth and addendum	
		modification, dual flank test, single flank test -tooth thickness	
	П	measurement:-tooth thickness at a pitch line, constant chord, base tangent	9
	п	method, measurement of over rollers - gear pitch measurement: - tooth to	
		pitch measurement, cumulative pitch error measurement - testing involute	
		form – allowable errors in spur gear.	
		Machine tool testing:- lathe tests:- spindle axis parallel to bed cross slide	
		perpendicular to spindle axis accuracy of pitch of lead screw etc – milling	
		machine tests: table surface parallel to guide ways, centre tee-slot parallel	
		to table movement and square with spindle axis cross travel of table	
		parallel to spindle axis atc. radial drill tests: saddle and arm movements	10
	111	parallel to bese plate, spindle and feed movement square with base plate	10
		other machines and methods tosting of measuring instruments, relate	
		other machines and methods – testing of measuring instruments:- plate	
		square testing, angle between centre lines of holes, spines, gear tooth	
		measurement, testing of try square, checking micrometer measuring faces,	

	calibration of micrometer screw, checking of an autocollimator, optical	
	square, calibration of polygon and circular table.	
	Laser metrology – applications of lasers in precision measurements - Co-	
	ordinate measuring machine - contact and non-contact cmm - causes of	
	errors - accuracy specifications - contact and non-contact probes -	
	Calibration of CMM - measuring scales - Moiré fringes in linear grating -	
IV	advantages and applications of CMM - Machine vision system - image	8
	formation - binary and grayscale image - image histogram - histogram	
	operations - pixel point processing and pixel group processing - image	
	sharpening and smoothing – edge detection and enhancement.	

- 1. ASME, Hand book of industrial metrology
- 2. Hume, "Metrology", McDonald
- Robert J. Hocken, Paulo H. Pereira, "Coordinate measuring machines and systems", Second Edition, <u>CRC</u>
- 4. Sharp, "Metrology", ELBS
- 5. Taher, "Metrology", ELBS

Ted Busch, "Fundamentals of dimensional metrology", Third Edition, Delmar Publishers

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05ME 6313	QUALITY ENGINEERING AND MANAGEMENT	3-0-0-3	2015

COURSE OBJECTIVES

- 1. To introduce the philosophy and core values of quality management.
- 2. To develop an understanding of quality management principles, frameworks, tools and techniques for effective real life applications in industry
- 3. To study different methods for improving quality.

COURSE OUTCOMES

Upon successful completion of the module students will be able to:

- 7. Develop an understanding on quality management philosophies and frameworks
- 8. Develop in-depth knowledge on various tools and techniques of quality management
- 9. Learn the applications of quality tools and techniques in both manufacturing and service

industry

MODULE	COURSE CONTENT (36 hrs)	HRS	
	Quality: Defining quality – philosophies of quality 'gurus'- dimensions of		
	quality - measures of quality - cost of quality - direct costs & indirect		
	costs - 'defectives' and its significance - traditional model and emerging		
	model of 'cost-of-quality.'	9	
	Continuous process improvement: PDSA cycle – problem solving methodology		
	Statistical process control: Statistical tools - control charts and use of		
	probability distributions, process capability.		
п	Acceptance sampling: Lot-by-lot acceptance sampling by attributes – fundamental concepts, statistical aspects: operating characteristic curve, producer's risk and consumer's risk, AQL, LQ, AOQ, ASN, ATI – sampling plan design.	9	
	Taguchi methods: Loss functions - signal-to-noise ratio - process		
	optimization and robust product design using orthogonal arrays, parametric		
III	and tolerance design.	10	
	Quality function deployment: Concept - house of quality – QFD process.		
	Total quality management (TQM): Definition - basic concepts - strategies.		
IV	Six sigma methodology: Basic concepts – DMAIC problem solving technique.	8	
	Quality system and standards: An overview of ISO 9000 and ISO 14000 series of standards		
REFERENCES:			
1. Dale H. Besterfield, "Quality control", Person Education, New Delhi, 2006.			

2. Dale H. Besterfield, Carol Besterfield, Glen H. Besterfield& Mary Besterfield, "Total quality management", Person Education, New Delhi, 2008.

- 3. R. Subburaj, "ISO 9000: Path to TQM", Allied Publishers Limited, New Delhi, 1997
- 4. Bank J., "The essence of total quality management", Prentice Hall
- 5. Dale B. G., "Managing quality", Prentice Hall
- 6. A.V. Feigenbaum, "Total quality control", McGraw Hill
- 7. G. L. Taguchi and Syed et. al., "Quality engineering production systems", McGraw Hill
- 8. Zaidi, "SPC concepts, methodology and tools", Prentice Hall
- 9. Perry L Johnson, "ISO 9000", McGraw Hill

COURSE CODE	COURSE NAME	L-T-P-C	YEAR		
05ME 6315	RAPID PROTOTYPING	1-1-0-2	2015		
COURSE OBJECTIVES:					

This subject provides students with

- 1. An understanding of the various rapid prototyping and rapid tooling technologies;
- 2. The knowledge to select appropriate technologies for product development purposes.
- 3. Students will study topics fundamental to rapid prototyping and automated fabrication, including the generation of suitable CAD models, current rapid prototyping fabrication technologies, their underlying material science, the use of secondary processing, and the impact of these technologies on society.

COURSE OUTCOMES:

Upon completion of the subject, students should be able to

- 1. Apply the basic principles of rapid prototyping (RP) and rapid tooling (RT), technologies to product development;
- 2. Decipher the limitations of RP and RT technologies for product development;
- 3. Realise the application of RP and RT technologies for product development.

MODULE	COURSE CONTENT (36 hrs)	HRS
MODULE	COURSE CONTENT (36 hrs)	HR

	Importance of being rapid - Roles of the Prototype-Process chain-data	
	processing for rapid prototype (RP): CAD model preparation and data	
	interfacing for RP -Classification of rapid Prototyping Systems- stereo	
Ι	lithography (SL): Principle, SL process, photo polymerization of SL resins.	
	Rapid freeze prototyping- Solid Ground Curing-advantage ,disadvantage	
	and applications.	
	Selective laser sintering (SLS): principle, indirect and direct SLS, -	
	selective laser cladding (SLC) - Laser engineered net shaping (LENS),	
II	Electron beam melting (EBM), 3D printing and desktop processes	
	advantage, disadvantage and applications.	
	Fused deposition modeling (FDM) - laminated object manufacturing-	
тп	Multi jet modeling (MJM) - Shape Deposition Manufacturing -advantage,	10
111	disadvantage and applications -vacuum casting.	
	Rapid tooling (RT): Classification of RT –Direct and indirect RT-Soft and	
IV	Hard Tooling - applications of RP: - heterogeneous objects, MEMS and	8
11	other small objects, medicine and art.	
DEFEDEN		
REFEREN(

- 1. PatrikVenuvinod, Weiyuyin Ma, "Rapid prototyping", Kluwer Academic Publishers
- T. A. Grimm & Associates, "Users guide to rapid prototyping", Society of Manufacturing Engineers (SME)
- 3. Frank W. Liou, "Rapid prototyping & engineering applications", CRC Press
- 4. Ali K. Kamarani, "Rapid Prototyping theory & practice", Manufacturing System Engineering Series, Springer Verlag
- 5. J. A. McDonalds, C. J. Ryall, "Rapid prototyping case book", Wiley Eastern
- 6. C. E. Bocking, AEW Rennie, "Rapid & virtual prototyping and applications", Wiley Eastern

COURSE CODE		COURSE NAME	L-T-P-C	YEAR	
05ME 63	877	RESEARCH METHODOLOGY	0-0-2-1	2015	
 COURSE OBJECTIVES 1. To generate awareness about the importance, types and stages of research. 2. To introduce the methods for data collection, analysis, interpretation and presentation of the results. COURSE OUTCOMES 					
 The significance of different types of research and its various stages The different methods of data collection Different methods for analyzing data and interpreting the results. The proper way of reporting and presenting the outcome. 					
MODULE		COURSE CONTENT (36 h	rs)	HRS	

I	Research: Meaning & objectives – types of research - identification, selection and formulation of research problem - research design - review of literature. Data collection & presentation: Primary & secondary data - collection methods. Basic statistical measures: Measures of central tendency, variation and skewness.	9	
п	Probability:Definition – discrete and continuous probability distributions: binomial, poison, uniform, exponential and normal distributions. Sampling technique: Sampling methods, sampling distribution of mean, variance and proportion, confidence interval estimation, determination of sample size.	9	
ш	Testing of hypothesis: Fundamentals of hypothesis testing – procedure of hypothesis testing - testing of mean, proportion and variance: one-tailed and two-tailed tests – chi-square test for checking independence of categorized data - goodness of fit test. Test for correlation and regression.	10	
IV	Non - parametric tests: One sample tests - sign test, chi-square test, Kolmogorov-Smirnov test, run test for randomness – two sample tests: sign test, median test, Mann-Whitney U test – K-samples tests: median tests, Kruskal-Wallis test. Interpretation and report writing: Meaning of interpretation, techniques of interpretations - types of report, layout of research report.	8	
END SEMESTER EXAM (ALL Modules)			

- 1. Panneerselvam, R., "Research methodology", Prentice Hall of India, New Delhi, 2011
- 2. Kothary, C. R., "Research methodology: methods and techniques", New Age International, New Delhi, 2008
- Goddard, W. and Melville, S., "Research methodology an introduction", Juta& Co. Ltd., Lansdowne, 2007
- 4. Miller and Freund, "Probability and statistics for engineers", Prentice Hall of India

Private Limited, New Delhi

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
	COMPUTER INTEGRATED		
05ME 6391	MANUFACTURING	3-0-0-0	2015
	LABORATORY I		

COURSE OBJECTIVES

- > To train students in various computer aided modelling techniques using CAD softwares.
- To mould students to be an expert in the field of finite element analysis and also able to undertake problem identification, formulation and solution.
- To assist and support the design, manufacture and testing of products and components for design oriented projects.
- > To emphasize the applications of DOE in the field of computer integrated manufacturing.

List of Exercises / Experiments

- 1. 3D solid modeling and assembly using any parametric software.
- 2. Synthesis of simple mechanisms using any parametric software.
- 3. Finite Element Analysis (FEA) :-
 - > Pre-processing (solid modeling, meshing, analysis setup)solver and
 - > post processing (graphical display and report)

(Exercises include Simple Beam, Plane Stress, Strain, ax-symmetric, 3D Solids).

4. Manufacturing system simulation using software.

 Design of experiments and analysis of data using software like SPSS, MiniTabetc (Analysis of mean and ANOVA Application of software)

COURSE OUTCOME:

- > The students shall be able to model 3-D CAD renderings.
- Students shall be able to apply FEA for solving problems in various areas.
- > The students should have the ability to conduct design of experiments and execute the same to an appropriate professional standard.

- 1. Arbor text, PTC Authorized training manual (PL-830A-01), PTC University, Parametric Training Corporation, 2010.
- 2. K J bathe, Finite Element Procedures, Prentice Hall, 2007.
- 3. Abaqus 6.13, Documentation, DassaultSystèms, 2013.
- 4. Jacob Fish, Ted Belytschko, A First Course in Finite Elements (Paperback), Wiley, 2007.
- 5. Douglas C. Montgomery, Design and Analysis of Experiments: International Student Version (English) 8th Edition, Wiley.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05ME 6302	COMPUTER AIDED MANUFACTURING	4-0-0-4	2015
COURSE OBJECT	TIVES		
After the successful	completion of this course, students will		
1. gain a basic	understanding of computer numerical of	control (CNC) machining processes
and operation	ns using a combination of G-codes, millin	ng and turning	gequipment
2. be able to cr	eate drawings using commercial solid mo	odeling CAD	software
3. be able to pr	ogram NC codes manually	U	
4 be able to ge	experience of the second se	Inackage	
4. <i>be able to ge</i>			
5. have known	the current status of CAD/CAM systems	s in industry	
COURSE OUTCO	MES		
Upon completion of	the subject, students should be able to		
1. Demonstrate	a basic understanding of machining fur	damentals ind	cluding speed and feed
calculations,	tooling systems, and work-holding sys	tems for CN	C milling and turning
equipment			0 0
2. Demonstrate	a basic understanding of numerical contra	rolled (NC) pr	ogramming strategies
3. Demonstrate	an ability to set-up, program, and	operate CNC	milling and turning
equipment ar	nd to generate NC code using G-codes to	machine par	ts to specifications.
		_	

MODULE	COURSE CONTENT (36 hrs)	HRS
	Introduction and design features of CNC machines: Working principles	
	of typical CNC lathes, turning centre, machining centre, CNC grinders,	
-	CNC gear cutting machines, wire cut EDM, turret punch press, CNC press	
I	brakes etc. Selection of CNC machine tools. Structure, drive kinematics,	9
	gear box, main drive, feed drive, selection of timing belts and pulleys,	
	spindle bearings arrangement and installation. Re-circulating ball screws,	

	linear motion guide ways, tool magazines, ATC, APC, chip conveyors,			
	tool turrets, pneumatic and hydraulic control systems.			
	INTERNAL TEST 1 (Module 1)			
	Control systems and interfacing: Open loop and closed loop systems,			
	microprocessor based CNC systems, block diagram of a typical CNC			
	system, description of hardware and software interpolation systems,			
II	standard and optional features of a CNC control system, comparison of	9		
	different control systems. Feedback devices with a CNC system, spindle			
	encoder.			
	INTERNAL TEST 2 (Module 2)			
	Part programming of a CNC lathe: Process planning, tooling, preset and			
	qualified tools, typical tools for turning and machining centers. Axes			
	definition, machine and work piece datum, turret datum, absolute and			
ш	incremental programming, tape codes , ISO and EIA codes, G and M	10		
	functions, tool offset information, soft jaws, tool nose radius			
	compensation, long turning cycle, facing cycle, constant cutting velocity,			
	threading cycle, peck drilling cycle, part programming examples.			
	Manual part programming of a machining centre: Co-ordinate systems,			
	cutter diameter compensation, fixed cycles, drilling cycle, tapping cycle,			
IV	boring cycle, fine boring cycle, back boring cycle, area clearance	8		
	programs, macros, parametric programming, part programming examples.			
	CAD/CAM based NC programming, features of typical CAM packages.			
	END SEMESTED EXAM (ALL Modulos)			
END SEWIESTER EAAWI (ALL WOULDES)				
REFERENCES:				
1. James Madison, "CNC machining hand book", Industrial Press Inc., 1996				
2. Stev	2. Steve Krar, Arthur Gill, "CNC technology and programming", McGraw-Hill, 1990			

 Berry Leathan - Jones, "Introduction to computer numerical control", Pitman, London,

- 4. Hans B. Kief, T. Fredericx Waters, "Computer numerical control", MacMillan / McGraw-Hill, 1992
- 5. Bernard Hodgers, "CNC part programming work book", City and Guids / Macmillan, 1994.
- 6. David Gribbs, "An introduction to CNC machining", Cassell, 1987
- Sadasivan, T. A. and Sarathy, D., "Cutting tools for productive machining", Widia (India) Ltd., 1999
- Radhakrishnan, P., "Computer numerical control machines", New Central Book Agency, 1992
- 9. Peter Smid, "CNC programming hand book", Industrial Press Inc., 2000

COURSE C	COURSE CODECOURSE NAMEL-T-P-CYEAR				
05ME 6304 INDUSTRIAL AUTOMATION 3-0-0-3		2015			
COURSE O)BJECT	TVES			
This	course	Provides comprehensive introduction	n to fluid p	ower includin	g both
hydraulics a	nd pneur	matics.			
COURSE C	DUTCO	MES			
On completion of this course the students will be able to acquire knowledge applications of fluid power in various engineering fields work with PLC and understa application in industry.				of the and its	
MODULE		COURSE CONTENT (3	6 hrs)		HRS
Ι	HYDR Introdu propert Constru	AULIC SYSTEMS action to fluid power system - Hydrauli ies, selection and application. action, operation, characteristics and grap	c fluids - fui phical symbol	nctions, types, s of hydraulic	9
	components- pumps, actuators/motors, valves, switches filters, seals, fittings and other accessories				
		INTERNAL TEST 1 (Modu	ile 1)		
PNEUMATIC SYSTEMS Introduction to pneumatic system - Construction, operation, characteristics II and symbols of pneumatic components. Air treatment - principles and components. Sensors- types - Characteristics and applications - Introduction to fluidics and MPL.				9	
INTERNAL TEST 2 (Module 2)					

ш	HYDRAULIC AND PNEUMATIC CIRCUITS: Reciprocating circuits, pressure dependant circuits, speed control circuits, pilot operated circuits, simple sequencing circuits, synchronizing circuits, circuits using accumulator, time delay circuits, logic circuits, cascading circuits, feedback control circuits.	10			
Image: PROGRAMMABLE LOGIC CONTROLLER Development of hydraulic / pneumatic circuits applied to machine to presses, material handling systems, automotive systems - packag industries manufacturing automation. IV Programmable logic controller-Basic PLC structure, Input / Out processing- Ladder programming. Instruction lists- Latching and inter relays, sequencing, Timers and counters, Shift registers, Master and Ju Control.		8			
END SEMESTER EXAM (ALL Modules)					
REFEREN	CES				
1. Anth	nony Esposito, Fluid Power with applications, Prentice Hall International, 1997	7			
2. Maju	umdar S. R., Oil Hydraulics, Tata McGraw Hill, 2002				
3. W. t	olton, Mechatronics, Pearson education Publication				
4. Werner Deppert / Kurt Stoll, Pneumatic Application, Vogel verlag, 1986					
 John Pippenger, Tyler Hicks, Industrial Hydraulics, McGraw Hill International Edition, 1980 					
6. And	6. Andrew Parr, Hydraulics and pneumatics, Jaico Publishing House, 2003				
7. FES	TO, Fundamentals of Pneumatics, Vol I, II and III				
8. Hehr	8. Hehn Anton, H., Fluid Power Trouble Shooting, Marcel Dekker Inc., NewYork, 1984				

9. Thomson, Introduction to Fluid power, Prentcie Hall, 2004

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05ME 6306	FLEXIBLE MANUFACTURING SYSTEMS	3-0-0-3	2015

COURSE OBJECTIVES

- 1. To provide an understanding of the concepts of flexible manufacturing systems, their components and operational decisions required for controlling such systems.
- 2. To specify the types of quantitative analysis that may be used with regard to FMS.
- 3. To study the fundamental concepts and programming of a Programmable Logic Controller (PLC).

COURSE OUTCOMES

Upon completion of this course work, students should be able to:

- 1. Perform modeling, design and simulation of flexible manufacturing systems.
- 2. Gain insight about the research areas related to FMS and real-time shop floor control.

MODULE	COURSE CONTENT (36 hrs)					
Ι	Introduction to FMS: Definition of FMS - types and configuration					
	concepts – types of flexibility. Functions of FMS host computer – FMS					
	host and area controller function distribution.					
	Development and implementation of FMS: Planning phases - integration -					
	system configuration – FMS layouts – simulation – FMS project)				
	development steps. Project management - equipment development - host					
	system development – planning - hardware and software development.					
	INTERNAL TEST 1 (Module 1)					
п	Pioneering integrated systems – different flexible systems: molins,					
	chalmersetc – different pallets and fixtures for prismatic and turned parts –					
	prismatic parts machines.					
	Planning and scheduling of FMS: Quantitative Analysis of FMS -					

Bottleneck	Model – Terminology	and symbols,	FMS	Operational	
parameters,	System performance meas	sures -Extended	Bottle	eneck model-	
Sizing the F	MS - problems.				

INTERNAL TEST 2 (Module 2)				
	Distributed numerical control: DNC system - communication between			
III	DNC computer and machine control unit – hierarchical processing of data			
	in DNC system – features of DNC system specific to FMS.			
	Automated material handling: Functions - types – quantitative analysis of			
	material handling equipments. Design of conveyors and AGV systems.	10		
	Automated storage: Storage system performance - AS/RS - carousel			
	storage system - WIP storage - interfacing handling and storage with			
	manufacturing.			
	Programmable logic controllers in FMS: Role of PLCs in Manufacturing			
	and Assembly operations in a CIM environment – PLC Input instructions,			
	Outputs. PLC Timer and Counter functions – Creating relay logic diagrams			
	and screen patterns for various operations in FMS from their process			
	control descriptions.			
	Data base in FMS: Manufacturing data systems and data flow-CAD and	8		
IV	CAM considerations for FMS – data base systems.	0		
	Design of outomated accomply systems. EMS according in concenses			
	Design of automated assembly systems - FWS case studies in aerospace			
	The Design of the second secon			
	- The Rover LM-500 FMS – The HNH (HattersleyMewmanHender) FMS			
	etc.			

END SEMESTER EXAM (ALL Modules)

- 1. Parrish D. J., "Flexible manufacturing", Butterworth Heinemann Ltd, 1990
- 2. Groover M. P., "Automation, production systems and computer integrated manufacturing", Prentice Hall India (P) Ltd., 2002
- 3. Shivanand H. K., Benal M. M and Koti V, "Flexible manufacturing system", New Age International (P) Limited. Publishers, 2006
- 4. Kusiak A., "Intelligent manufacturing systems", Prentice Hall, Englewood Cliffs, NJ,

1990

- 5. Joseph Talavage and Roger G. Hannan, Flexible Manufacturing Systems in practice, Marcel Dekker, Inc. New York, 1988.
- 6. Considine D. M. & Considine G. D., "Standard handbook of industrial automation", Chapman and Hall, London, 1986
- 7. Viswanadhan N. and Narahari Y., "Performance modeling of automated manufacturing systems", Prentice Hall India (P) Ltd., 1992
- John W. Webb and Ronald A. Reis "Programmable Logic Controllers", Prentice Hall India (P) Ltd., 2006.
- 9. Ranky P. G., "The design and operation of FMS", IFS Pub, U. K, 1998

COURSE CODE		COURSE NAME	L-T-P-C	YEAR				
05ME 6322		SUPPLY CHAIN MANAGEMENT	3-0-0-3	2015				
COURSE OBJECTIVES								
1. To introduce the major elements of supply chain and the need for supply ch								
mana	agement.							
2. To st	tudy the	role of forecasting and inventory manage	ement in supp	ly chain.				
3. To d	iscuss sc	ourcing, transportation and logistics decis	ions in supply	v chain manage	ment.			
COURSE C	DUTCO	MES						
1. Stud	ents will	be able to understand how supply chain	n strategy can	provide a com	petitive			
edge	for orga	inizations	65	1	F			
2. Stud	ents will	l learn about the importance of supply cl	hain manager	nent and how t	o apply			
decis	decision making techniques in an integrated supply chain environment.							
MODULE	COURSE CONTENT (36 hrs)			HRS				
	Introduction to supply chain management: Supply chain basics, decision							
	phases in supply chain, supply chain flows, supply chain efficiency and							
	responsiveness, supply chain integration, process view of a supply chain,							
т	uncertainties in supply chain, key issues in supply chain management,							
-	drivers of supply chain performance. Supply chain coordination, bullwhip							
	effect,	developing relationships in the supply c	hain, resolvir	ng conflicts in	nflicts in			
	supply	chain relationships, role of information to	echnology in	supply chain				
INTERNAL TEST 1 (Module 1)								
	Deman	d forecasting in supply chain: Role of f	orecasting in	supply chain,				
	compo	nents of a forecast, forecasting methods,	estimating le	vel, trend and				
п	seasona	al factors, Holt's model, Winter's model,	measures of	forecast error.	9			
	Role of	f aggregate planning in supply chain: Ag	gregate plann	ing strategies,				
	managi	ing supply and demand in supply chain.						
INTERNAL TEST 2 (Module 2)								
			,					

ш	Supply chain inventory: Role of cycle inventory in supply chain, economies of scale, lot sizing for a single product, lot sizing for multiple products, quantity discounts, trade promotions, price discrimination. Role of safety stock in supply chain, determining appropriate level of safety inventory, inventory replenishment policies, measures of product availability.	10
IV	 Sourcing decisions in supply chain: Supplier selection and contracts, design collaboration, making sourcing decisions in practice. Transportation decisions: Role of transportation in supply chain, factors affecting transportation decisions. Routing and scheduling in transportation. Logistics: Definition, logistics and SCM, international considerations, inbound logistics, internal logistics and outbound logistics. Reverse logistics, green supply chain. 	8
	END SEMESTER EXAM (ALL Modules)	
DEFEDE	ICES:	
REFERE		
1. Sur	il Chopra and Peter Meindl, "Supply chain management - strategy planning and ration", PHI	1
REFERE 1. Sur ope 2. Han Edu	il Chopra and Peter Meindl, "Supply chain management - strategy planning and ration", PHI adfield R. B., Nichols Jr. E. L., "Introduction to supply chain management", Pea location	l arson
REFEREN1.Surope2.HarEdu3.Rag200	il Chopra and Peter Meindl, "Supply chain management - strategy planning and ration", PHI adfield R. B., Nichols Jr. E. L., "Introduction to supply chain management", Pea location ghuram R. and Rangaraj N., "Logistics and supply chain management", Macmil 1	l arson lan,
REFEREN1.Surope2.HaiEdu3.Rag2004.Sincha	il Chopra and Peter Meindl, "Supply chain management - strategy planning and ration", PHI adfield R. B., Nichols Jr. E. L., "Introduction to supply chain management", Pea acation shuram R. and Rangaraj N., "Logistics and supply chain management", Macmil 1 chi-Levi, D., Kaminsky, P., and Simchi-Levi, E., "Designing & managing the in: concepts, strategies & case studies." 2 nd Edition, Tata McGraw-Hill, 2003	d arson lan, supply
REFEREN1.Surope2.HarEdu3.Rag2004.Sincha5.Aga200	il Chopra and Peter Meindl, "Supply chain management - strategy planning and ration", PHI adfield R. B., Nichols Jr. E. L., "Introduction to supply chain management", Pea acation shuram R. and Rangaraj N., "Logistics and supply chain management", Macmil 1 schi-Levi, D., Kaminsky, P., and Simchi-Levi, E., "Designing & managing the in: concepts, strategies & case studies." 2 nd Edition, Tata McGraw-Hill, 2003 arwal D. K., "A text book of logistics and supply chain management", Macmilla 3	d arson lan, supply an,

COURSE CODE		COURSE NAME	L-T-P-C	YEAR		
05ME 6324		COMPOSITE MATERIAL TECHNOLOGY	3-0-0-3	2015		
COURSE OBJECTIVES:						
> To	provide	knowledge of various manufacturing	methods of	f different con	mposite	
mate	rials, the	eir properties, and their applications.				
> To u	nderstan	d machining characteristics of various co	omposite mate	rials.		
COURSE O	DUTCO	ME:				
At the end of	of this co	ourse the student will be able to select	appropriate co	omposite mater	ials for	
specific app	lications					
MODULE COURSE CONTENT (36 hrs)				HRS		
	Introdu	ction – Fibre reinforcements – Fa	brication, p	roperties and		
	applica	applications of Glass fibres, Boron fibres, Carbon fibres, Aramid fibres,				
I	Ceramic fibres – Whiskers – Comparison of fibres: particulate and whisker					
	reinforcements - Matrix materials - Polymers, Metals, Ceramics and their					
	properties.					
INTERNAL TEST 1 (Module 1)						
	Polyme	er matrix composites – Processing of	PMCs – The	rmoset matrix		
	compos	osites: Hand layup, spray, filamentwinding, pultruion, resin transfer				
	mouldi	ng, auctoclave moulding – Thermoplast	ic matrix con	nposites :Film		
II	stackin	g, diaphragm forming, thermoplastic	c tape layi	ng, Injection	9	
	mouldi	ng – Interfaces in PMCs:Glass fibre/p	polymer inter	face, Aramid		
	fibre/po	olymer interface – Structure, application	s and mechar	nicalproperties		
	of PMC	Cs – Recycling of PMCs				
INTERNAL TEST 2 (Module 2)						
	Metal	matrix composites – Types, Metal	lic matrices:	Aluminium,	10	
III	Titaniu	m, Magnesium, copper Alloys -Proces	singof MMC	s: Solid state,	10	

Liquid state, Vapour state ,In-situ - Interface/Interphase in MMCs -Interfacialbonding in MMCs - Mechanical properties, coefficient of thermal expansion, environmental effects, moisture effects – Applications of MMCs – Recycling of MMCs. Ceramic matrix composites: Introduction – Types – Toughening Mechanism- Processing of CMCs: Cold pressing, sintering, reaction bonding, liquid infiltration, lanxide process – In-situ chemical reaction techniques: Chemical vapour deposition, Chemical vapour impregnation, Sol-gel, C-C Composites. Interface in CMCs. Mechanical Properties and 8 IV Applications of CMCs – Fatigue behaviors and S-N curves of particle and whisker reinforced CMCs – Hybrid composites – Thermal fatigue – Creep. Machining of composites- Traditional (turning, milling, drilling, abrasive machining) and non-traditional (abrasive waterjetmachining, electric discharge machining, ultrasonic, laser-assisted) machining of Composites.

END SEMESTER EXAM (All Modules)

- 1. Autar K. Kaw, "Mechanics of Composite Materials", CRC press.
- 2. Chawla K.K., "Composite Materials: Science and Engineering", Springer, New York.
- 3. Jahanmir S., Ramulu, M. and Koshy, P., "Machining of Ceramics and Composites", Marcel Dekker Inc, New York, 1999.
- 4. Mallick P.K., "Fiber Reinforced Composites: Materials, Manufacturing and Design", CRC Press, New Delhi.
- 5. Sheikh-Ahmad J.Y., "Machining of Polymer Composites", Springer.
- 6. Hull D. and Clyne T.W., "An Introduction to Composite Materials", Cambridge University Press.
| COURSE CODE | COURSE NAME | L-T-P-C | YEAR |
|-------------|--|---------|------|
| 05ME 6326 | SIMULATION OF
MANUFACTURING SYSTEMS | 3-0-0-3 | 2015 |

COURSE OBJECTIVES

- 1. Expose the students to Discrete-Event Simulation as a design and analysis tool, problem solving tool, risk analysis tool, and decision-making tool in manufacturing environment.
- 2. Know how to conduct a successful simulation using software such as Matlab

COURSE OUTCOMES:

After completing the course students should be able to:

- 1. understand the nature of discrete-event simulation and the types of simulation models
- 2. understand the broad applicability of discrete-event simulation to solve complex manufacturing systems problems
- 3. learn the essential steps of the simulation methodology
- 4. learn analytical techniques for interpreting input data and output results pertinent to simulation models
- 5. learn to use Simulation Software Tool to build credible valid simulation models, design and run simulation experiments, and critically evaluate decision-support simulation results
- 6. gain insight into system behavior by measuring the performance characteristics of proposed new manufacturing system or the impact of proposed changes for existing manufacturing system.

MODULE	COURSE CONTENT (36 hrs)			
Ι	 System concept: Systems and system environment, components of a system, discrete and continuous systems, systems approach to problem solving, types of system study, system analysis, system design and system postulation, system modeling, types of models. System simulation: Technique of simulation, comparison of simulation and analytical methods, types of system simulation, steps in simulation study, Monte Carlo simulation. Concepts in discrete event simulation: Event scheduling/time advance algorithm, modeling world views, simulation programming tasks. 	9		

comparison and selection of simulation languages.				
INTERNAL TEST 1 (Module 1) Random number generation: Techniques for generating random				
П	numbers, linear congruential method, test for random numbers, frequency tests, run tests, tests for autocorrelation, gap test, and Poker test.			
	Random variate generation: Inverse transformation technique, exponential, uniform, weibull, triangular, empirical-discrete and continuous distributions. Convolution method, acceptance - rejection technique.	9		
	Input modeling for simulation: Data collection, identifying the distribution with data, parameter estimation, goodness of fit test, Chi square, Klomogrov and Smirnov tests, selecting input model when data are not available.			
	INTERNAL TEST 2 (Module 2)			
III	Verification and validation of simulation models: Verification of simulation models, calibration and validation of models, face validity, validation of model assumption, validating input-output transformation, input-output validation using historical input data.	10		
	Output analysis for a single model: Measures of performance and their estimation, point estimation, interval estimation, output analysis for terminating simulations and steady state simulations.			
IV	Simulation modeling and analysis of manufacturing systems: Objectives, performance measures, issues in simulation of manufacturing systems, simulation software for manufacturing applications, simulation of job shop manufacturing systems, simulation modeling and analysis of single server and single queue systems, inventory systems and pert networks.	8		
END SEMESTER EXAM (All Modules)				

- 1. Banks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M., "Discrete-event system simulation", Third Edition, Pearson Education, Inc., 2001
- 2. Gordon G., "System simulation", Prentice Hall Ltd. 1991
- 3. Deo, N., "System simulation with digital computer", Prentice Hall of India, 1997
- Askin R. G. and Standridge, C. R., "Modeling and analysis of manufacturing systems", John Wiley & Sons, 1993.

COURSE (E CODE COURSE NAME L-T-P-C YEAR				
05ME 6	332	INDUSTRIAL ROBOTICS	3-0-0-3	2015	
COURSE O)BJECT	TIVES:			
1. To b	e familia	ar with the automation and brief history o	f robot and ap	plications.	
2. To g	ive the s	tudent familiarities with the kinematics o	of robots.		
3. □o g	give know	wledge about robot end effectors and thei	r design.		
4. To le	arn abou	ut Robot Programming methods & Langu	ages of robot		
5. To g	ive knov	vledge about various Sensors and their ap	plications in	robots.	
COURSE C	OUTCO	MES:			
1. Stud	ents will	be equipped with the automation and im	portance of re	obotics in today	and
futur	e goods	production.			
2. Stud	ents will	be familiarized with the kinematic motion	ons of robot.		
3. Stud	ents will	have good knowledge about robot end e	ffectors and th	neir design cond	cepts.
4. Stud	ents will	be equipped with the Programming method	hods & variou	s Languages of	2
robo	ts.				
5. Stud	lents wil	l be equipped with the principles of vario	ous Sensors ar	d their applicat	ions in
Robo	ots.				
MODULE		COURSE CONTENT (3	6 hrs)		HRS
	FUND	AMENTAL CONCEPTS OF ROBOT	ICS		
	History	y, present status and future trends, roboti	ics and autom	ation, laws of	
I	robotic	s, robot definition, robotics system	ns and rot	ot anatomy,	9
	specific	cation of robots. Resolution, repeatal	bility and ad	ccuracy of a	
	manipulator.				
INTERNAL TEST 1 (Module 1)					
	ROBO	T DRIVE MECHANISMS			
	Power	transmission systems and control	robot drive	mechanisms	0
II	mechar	nical transmission method rotary-to-r	otary motion	conversion	フ
	rotary-	to-linear motion conversion, end effector	rs- types, grip	ping problem.	
		- ,	JI , O F	,	

-		
	remote-centered compliance devices - control of actuators in robotic	
	mechanisms. Sensors for robotic applications: devices - non-optical-	
	position sensors - optical position sensors - velocity sensors - proximity	
	sensors: - contact and non-contact type - touch and slip sensors - force and	
	torque sensors - AI and robotics	
	INTERNAL TEST 2 (Module 2)	
	COMPUTER VISION FOR ROBOTICS SYSTEMS	
	Robot vision systems - imaging components - image representation -	
	hardware aspects - picture coding - object recognition and categorization -	
	visual inspection - software considerations - applications - commercial -	
III	robotic vision systems.	10
	COMPUTER CONSIDERATIONS FOR ROBOTIC SYSTEMS:	
	Computer architecture for robots hardware computational elements in	
	robotic applications - robot programming - sample programs - path	
	nlanning - robot's computer system	
	TRANSFORMATIONS, APPLICATIONS:	
	Homogeneous co-ordinates, co-ordinate reference frames, homogeneous	
	transformations for the manipulator, the forward and inverse problem of	
	manipulator kinematics, motion generation, manipulator dynamics,	
	Jacobian in terms of D. H. matrices controller architecture. Robot	Q
IV	programming of commercial robots - robot design and process	0
	specifications - motor selection in the design of a robotic joint - robot cell	
	layouts - economic and social aspects of robotics, Capabilities of robots-	
	robotics applications - obstacle avoidance - robotics in India - the future of	
	robotics.	
	END SEMESTER EXAM (All Modules)	
REFERE	NCES:	

- 1. S.K Saha, "Introduction to Robotics", McGraw Hill Education, 2008
- 2. Mikell P Groover, Mitchell Weiss, Roger N Nagel, Nicholas G Odrey, "Industrial Robotics", McGraw Hill Book Co, NY, 2008.
- Deb S R, "Robotics Technology and Flexible Automation", Tata McGraw Hill Book Co., 2004.
- Fu KS, Gomaler R C and Lee C S G., "Robotics: Control Sensing, Vision, Intelligence", McGraw Hill Book Co., 1987.
- 5. Shuman Y No, "Handbook of Industrial Robotics", John Wiley and Sons, New York, 1985.

COURSE C	CODE	COURSE NAME	L-T-P-C	YEAR	
05ME 6.	334	PRECISION AND MICROMACHINING	3-0-0-3	2015	
COURSE O	BJECT	TIVES			
1. To di	iscuss th	e principles of micromachining.			
2. To in	troduce	the basic concepts in laser beam machin	ing.		
3. To st	udy the	various advanced finishing processes and	d their applica	tions.	
COURSE O	UTCO	MES			
On successfu	ıl compl	letion of this course, students will be able	e to:		
1. Gain	an insig	the into the various aspects of laser beam	machining.		
2. Have	a good	l understanding of the theories of cuttin	ig and chip to	ormation in mic	cro and
nano	enginee	ring.	1 1	1 1 1 1	. • 1
3. Acqu	lire know	wledge in the mechanism of material ren	noval and mac	chinability of m	aterials
	vanced	linishing processes.			IIDC
MODULE	Locard	haam maahining, Lagang hagiag intag	motion of log	an avatam fan	нкз
	Cutting	operation principles of laser ma	torial remove	dotailed	
	discuss	ion on process analysis absorbed lass	er nower at	the cut front	
	avother	rmic heat in reactive laser outting	baracteristics	of cut front	
	tompor	ature at out front malt film thickness n	nalt flow valo	of cut fiolit,	
т	tempera	front cut none, men min theckness, h	striction the	mal demonsio	
1		front- characteristics of cut surface,	striation, the	mai dynamic	9
	instabil	ity, hydrodynamic instability - heat-a	inected zone	- processing	
	parame	ters, cutting speed, laser beam, polarizat	ion of beam,	wavelength of	
	laser be	eam, pulsed laser beam etc, gas nozzle	etc - workpie	ce aspects for	
	laser be	eam machining, workpiece thickness, wo	rkpiece mater	ials.	
	Mecha	nical micromachining: microfluidic	systems -	theory of	
II	micron	nachining; micromilling force analysis,	initial chip c	url modeling,	9
	burr fo	rmation in micromachining - microma	chining tool	design - high	

	speed air turbine spindles- mechanical design of high-speed rotors, basic				
	geometry of the rotor, rotor with fillet surfaces.				
	Nanomachining: Introduction, nanometric machining, theoretical basis of				
	nanomachining, cutting force and energy, cutting temperature, chip				
	formation and surface generation, minimum undeformed chip thickness,				
III	critical cutting edge radius, properties of workpiece materials, comparison	10			
	of nanometric machining and conventional machining- implementation -				
	single point diamond turning.				
	Advanced finishing processes (AFPs), abrasive flow machining (AFM),				
	magnetic abrasive finishing (MAF), elastic emission machining (EEM),				
	ion beam machining (IBM), microhoning , superfinishing and chemical				
	mechanical polishing (CMP). Micromachining by photonic beams-	0			
IV	excimer laser- model construction of laser dragging, numerical simulation	8			
	of dragged profile. Micromanufacturing for document security: Optically				
	variable device - ODV foil microstructures- generic OVD microstructures-				
	nano CODES.				
	END SEMESTER EXAM (All Modules)				
REFERE	NCES:				
1. Pau	lo Davim J, "Nontraditional machining processes", ISBN 978-1-4471-	5179-1,			
Spi	ringer-Verlag, London, 2013.				
2. Ho	ng Hocheng and Hung-Yin Tsai, "Advanced analysis of nontraditional macl	nining",			
Spi	Springer.				
3. Nit	3. NitaigourPremchandMahalik, "Micromanufacturing and nanotechnology"				
4. Jos	4. Joseph McGeough, "Micromachining of engineering materials mechanical engineering",				
ISI	3N: 0-8247-0644-7.				
5. M.	Kahrizi, "Micromachining techniquess for fabrication of micro, nano structures	5".			
6. Ma	6. Mark J. Jackson, "Micro and nanomanufacturing", Springer.				

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05ME 6336	MICRO AND NANO MANUFATURING	3-0-0-3	2015

COURSE OBJECTIVES

- 1. To discuss the various manufacturing processes of MEMS and semiconductor devices.
- 2. To study size-effects and material/interface behaviour at the micro-/nano scale.
- 3. To study the structure, properties and applications of carbon based nanostructures.

COURSE OUTCOMES

- 1. A good understanding of the fundamentals associated with manufacturing at the micro and nano scale.
- 2. In depth knowledge of micro and nano structures and their processing methods and techniques.

MODULE		HRS
Ι	Characterizing etching processes in bulk micromachining - microfabrication of MEMS and semiconductor devices -basics of microfabrication, integrated circuit fabrication etc - crystallography and its effects, silicon as substrate and structural material, stress and strain, - crystal plane effects on etching, wet etching process, reaction phenomena, anisotropic etching, isotropic etch curves, masking for anisotropic etchants, etching control, fusion bonding of silicon on an insulator, deep reactive ion etching, fabrication of a cantilever probe, manufacture, microprocessors etc and applications- problems with etching in bulk micromachining.	9
П	Photolithography: Principle of the soft lithography and applications - principle of microcontact printing and applications - characterizing the surface micromachining process, isolation layer, sacrificial layer, structural material, selective etching – properties, stress, stress measurement, stiction - wafer bonding: anodic and fusion, bonding. Micro and nanotechnology: Applications for space micropropulsion - subsystems and devices for miniaturised spacecraftsmicropropulsion: microbolomete, micro FEEP,	9

	integrated cold-gas microthruster, microturbogas, pyrotechnic actuator and			
	microvalveetc - propulsion systems: solid propellant, ADCS etc.			
	Carbon nanotube production and applications: Basis of nanotechnology -			
	structure and properties of carbon nanotubes- production of carbon			
	nanotube: chemical vapour deposition, arc discharge, laser ablation,			
	mechanisms of growth, purification of carbon nanotube – applications:			
III	electrical transport of carbon nanotubes for FET, Computers, nanodevices	10		
	for biomedical, X-ray equipment, nanomechanic actuator and artificial			
	muscles, fuel cells, membrane electrode assembly, mechanical and			
	electrical reinforcement of bipolar plates, hydrogen storage etc.			
	Carbon based nanostructures: - Structure of carbon nanotubes. V-shaped			
	double beliest hambes biogenetical membels as structure of fullerences			
	double nencal, bamboo, merarchical morphology - structure of fullerenes -			
	structure of carbon nanoballsstructure of carbon nanofibers - porous carbon			
	- properties of carbon nanostructures – synthesis - 15 potential applications			
IV	of nanostructures - composite materials - nanotechnology for fuel cell	8		
	applications: nanoparticles in heterogeneous catalysis, O2 electroreduction			
	reaction on carbonsupportedPt catalysts, carbon nanotubes as catalyst			
	supports.			
	END SEMESTER EXAM (All Modules)			
REFERE	NCES:			
1. Nit	aigourPremchandMahalik, "Micromanufacturing and nanotechnology", Springe	er.		
2. M.	Kahrizi, "Micromachining techniquess for fabrication of micro, nano structures	s".		
2. In Kam Zi, Information g commutes for fabrication of micro, nano siluctures.				

- 3. Mark J. Jackson, "Micro and nanomanufacturing", Springer
- 4. Jeremy Ramsden, "Micro &nano technologies", Elsevier.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR	
05ME 6366	SEMINAR I	0-0-2-2	2015	
Each student shall p	prepare a seminar paper on any topic of	interest relat	ed to the core/elective	
courses being underg	gone in the second semester of the M. Te	ch. programn	ne. He/she shall get the	
paper approved by	the Programme Coordinator/Faculty M	Members in t	he concerned area of	
specialization and shall present it in the class in the presence of Faculty in-charge of seminar				
class. Every student shall participate in the seminar. Grade will be awarded on the basis of the				
student's paper, presentation and his/her participation in the seminar.				

COURSE CODE	COURSE NAME	L-T-P-C	YEAR	
05ME 6388	MINI PROJECT	0-0-2-2	2015	
The mini project i	s designed to develop practical abilit	y and know	ledge about practical	
tools/techniques in	order to solve the actual problems	related to the	ne industry, academic	
institutions or simil	ar area. Students can take up any app	olication leve	el/system level project	
pertaining to a relev	vant domain. Projects can be chosen et	ther from the	e list provided by the	
faculty or in the field	d of interest of the student. For external p	orojects, stude	ents should obtain prior	
permission after sub	mitting the details to the guide and syno	psis of the w	ork. The project guide	
should have a minir	num qualification of ME/M.Tech in rele	evant field of	work. At the end of	
each phase, presenta	ation and demonstration of the project s	hould be con	ducted, which will be	
evaluated by a pane	l of examiners. A detailed project report	t duly approv	ed by the guide in the	
prescribed format should be submitted by the student for final evaluation. Publishing the work in				
Conference Proceedings/ Journals with National/ International status with the consent of the				
guide will carry an a	dditional weightage in the review proces	S.		

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05ME 6392	COMPUTER INTEGRATED MANUFACTURING LABORATORY II	0-0-2-1	2015

COURSE OBJECTIVES:

- > To provide high quality laboratory experience for post graduate students in areas of manufacturing automation and computer assisted and computer controlled manufacturing.
- > To familiarize students with the interdisciplinary nature of the course and embellish their experience in the field of instrumentation.
- > To equip students with the current tools for design & manufacturing.
- > To expertise students in the field of reverse engineering and PLC programming.

List of Exercises / Experiments

- 1. Programming of CNC lathe using software.
- 2. Programming of machining centre using software.
- 3. Automation using pneumatics
- 4. Automation using power hydraulics
- 5. Automation using PLCs for pneumatic control
- 6. Study of process control simulator.
- 7. PLC programming and implementation.
- 8. Transducer interface with PC.
- 9. Stepper motor and servo motor interface with PC.
- 10. Process capability evaluation based on inspection data.

COURSE OUTCOME:

Students who successfully complete this course will have enhanced knowledge in computer integrated manufacturing systems and better understanding of various aspects of CAM systems. They will know to use modern technologies in their academic and future life.

- 1. Arbor text, PTC Authorized Training Manual (pl-830a-01), PTC University, Parametric Training Corporation, 2010.
- 2. L.A. Bryan, Programmable Controllers Theory and Implementation, second edition, Industrial Text Publication.
- 3. Kevin Otto, Product Design: Techniques in Reverse Engineering and New Product Development (english) 1st Edition, Pearson.
- 4. Bruno Siciliano, OussamaKhatib, Springer Handbook of Robotics, Springer, 2008.
- 5. Margolis, Arduino Cookbook, Oreilly, 2012.

COURSE O	OURSE CODECOURSE NAMEL-T-P-CYEAR				
05ME 7	05ME 7341 PRODUCTION SCHEDULING 3-0-0-3 2015		2015		
COURSE O)BJECT	TIVES			
1. To in	ntroduce	theory and algorithms for scheduling sev	veral tasks ove	er time	
2. To p	rovide a	n understanding of measures of performa	ance, single m	achine schedul	ing and
flow	shop sch	eduling			
3. To st	tudy line	balancing algorithms and project schedu	ling techniqu	es	
COURSE O	OUTCO	MES			
Students sho	ould be a	ble to:			
1. App	ly the co	ncepts of sequencing and scheduling on t	he factory flo	or	
2. Have	e knowl	edge about the fundamental research	topics in the	e field of pro	duction
sche	duling				
MODULE					HRS
	Introdu	iction to scheduling – objectives in	scheduling	- processing	
	charact	teristics and constraints – performance	measures. Si	ngle machine	
	EDD m	ula to maximum lataness - branch and h	o minimize me	an now time,	
Ι	mean tardiness — assignment model. Parallel processors — minimization of				
	mean tardiness – assignment model. Parallel processors – minimization of mekaspen, mean weighted flowtime. McNeughten's algorithm, houristic				
	proced	ures	ginon s'argon	unin, neuristie	
	procee				
	Flow s	shop scheduling – Extension of Johns	ons's rule fo	or 3 machine	
	problei	m – branch and bound technique – Pa	lmer's heuris	stic. Job shop	
II	schedu	ling – introduction to dispatching rule	s – SPT, FC	CFS, MWKR,	9
	MOPN	R, LWKR, RANDOM – two jobs and	m machines	scheduling -	
	Giffler	and Thomson algorithm.			
	Mass p	production management - basic idea of	assembly lin	e balancing -	
III	optimiz	zation of number of stations with	given produ	iction rate -	10

	minimization of cycle time with fixed number of stations. Line balancing algorithms – largest candidate rule, Kilbridge and Wester, rank positional weight method, COMSOAL.	
IV	Project scheduling – project network – AOA and AON - Gantt chart – critical path scheduling – probabilistic method for project scheduling – deployment of resources – activity time/cost trade-off analysis, resource leveling and resource allocation.	8

END SEMESTER EXAM (All Modules)

- 1. R. Paneerselvam, "Production and operations management", Prentice-Hall, New Delhi, 2005
- 2. Roberta S. Russell and Bernard W. Taylor III, "Operations management", Pearson Education, Delhi, 2003
- 3. Kenneth R. Baker, "Introduction to sequencing and scheduling", John Wiley and Sons, 1974
- 4. Michael Pinedoo, "Scheduling: theory, algorithms and systems", Prentice Hall, New Delhi, 1995.
- 5. Wild, R., "Mass production management", John Wiley and Sons, New York.

05ME 7343	COURSE NAME	L-T-P-C	YEAR
05ME 7343	DESIGN FOR		
	MANUFACTURING AND	3-0-0-3	2015
	ASSEMBLY		2010
	ASSEMBLY	3-0-0-3	2015

COURSE OBJECTIVES:-

- 1. To introduce the concept and application for design for manufacturing and assembly to practicing designers and manufacturing engineers as well as design students
- 2. To discuss various fundamentals of assembly and design recommendations for product development
- 3. The student will be able to reduce a company's production costs by analyzing and eliminating the factors that greatly affect the time, cost, and quality of manufacturing, assembly and service processes.
- 4. Utilize effective analysis, brainstorming, and trade-off techniques for redesigning assemblies and subassemblies.

COURSE OUTCOMES:-

- Understanding various types of materials, its classification, suitable materials for product design and various methods of material selection, various mechanical properties of material.
- 2. Understanding various casting design, machining design, designing of formed .

1	
L	
_	1

MODULE		HRS	
	Process capability and tolerances: Process capability, mean, process		
	capability metrics, Cp, Cpk, cost aspects, feature tolerances, geometric		
	tolerances - ISO standards - surface finish, review of relationship between		
Ι	attainable tolerance grades and different machining and sheet metal		
	processes. Cumulative effect of tolerances - worst case method, root sum	9	
	square method, dimensions following truncated normal distributions,		
	Monte Carlo Simulation.		

	Selective assembly: Interchangeable past manufacture and selective	
	assembly, deciding the number of groups - Model-I: Group tolerances of	
	mating parts equal; Model-II: total and group tolerances of shaft equal.	
	Control of axial play - introducing secondary machining operations,	
	laminated shims, examples.	
	Datum systems and fixture design: Degrees of freedom, grouped datum	
	systems - different types, two and three mutually perpendicular grouped	
	datum planes; grouped datum system with spigot and recess, pin and hole;	
	grouped datum system with spigot and recess pair and tongue - slot pair -	
	computation of translational and rotational accuracy, geometric analysis	
	and applications.	9
11	True position theory: Comparison between as ordinate and convention	-
	The position theory. Comparison between co-ordinate and convention	
	method of feature location, tolerancing and true position tolerancing,	
	virtual size concept, floating and fixed fasteners, projected tolerance zone,	
	zero true position tolerance, functional gauges, paper layout gauging,	
	compound assembly, examples.	
	Form design of castings, weldments and sheet metal components:	
	Redesign of castings based on parting line considerations, minimising core	
	requirements, redesigning cast members using weldments, form design	
	aspects of sheet metal components.	
III	1 1	10
	Tolerance charting technique: Operation sequence for typical shaft type	
	of components. Preparation of process drawings for different operations,	
	tolerance worksheets and centrality analysis, examples.	
	Redesign for manufacture: Design features to facilitate machining:	
	datum features - functional and manufacturing. Component design -	
TX 7	machining considerations, redesign for manufacture, examples.	8
IV		
	DFMA tools: Computer aided DFMA, Poke Yoka principles, axiomatic	
	design method, quality function deployment, design for six sigma, lean	

manufacturing,	waste	identification	and	elimination,	value	stream
mapping, sensor	· interfac	e for fool-proof	f syste	em design.		

END SEMESTER EXAM (All Modules)

- 1. Harry Peck, "Designing for manufacture", Pitman Publications, 1983
- Matousek, "Engineering design a systematic approach", Blackie and Son Ltd., London, 1974
- 3. Micheal Wader, "Lean tools: a pocket guide to implementing lean practices", Productivity and Quality Publishing Pvt Ltd., 2002
- Spotts M. F., "Dimensioning and tolerance for quantity production", Prentice Hall Inc., 1983
- Oliver R. Wade, "Tolerance control in design and manufacturing", Industrial Press Inc., New York, 1967
- 6. James G. Bralla, "Hand book of product design for manufacturing", McGraw Hill, 1983
- Trucks H. E., "Design for economic production", Society of Manufacturing Engineers, Michigan, Second Edition, 1987
- 8. Poka Yoke, "Improving product quality by preventing defects", Productivity Press, 1992
- 9. Basem Said El-Haik, "Axiomatic quality", John Wiley and Sons, 2005

05ME 7	345	LEAN MANUFACTURING	3-0-0-3	2015	
COURSE C)BJECT	TIVES:			
Upon compl	etion of	this course the student will be able			
1. To d princ	lesign a ciples.	globally competitive manufacturing org	anisation usin	ng lean manufa	icturing
2. To c chan	levelop ge proce	the skills to implement lean manufact ess to achieve continuous improvement of	uring in indu	ustry and manand productivity.	age the
COURSE C	DUTCO	MES:			
After succes	sful com	pletion of this course the students will			
1. Ident	tify and	understand the key requirements and con	ncepts in lean	manufacturing	; and to
initia	ite a con	tinuous improvement change program in	a manufactur	ing organization	n
2. Appl	y the too	ols in lean manufacturing to analyse a ma	anufacturing	system and plan	n for its
impr	ovement	S.			
3. Man	age the	manufacturing system to achieve six sign	na quality and	l sustainability.	
MODULE					HRS
	Lean n	nanufacturing: Basics, principles & eler	nents		
	Small-	lot production: Lot-size basics; lot	sizing; lot-si	ze reduction;	
I	iacinta	ting sman for size.			9
	Setup-	Time reduction: Setup reduction me	thodology; to	echniques for	
	setup-r	eduction; setup reduction projects.			
	Pull p	roduction systems: Pull systems and pu	ish systems;	conditions for	
	pull pr	oduction systems; how to achieve pull p	roduction; m	echanisms for	
п	signal a	and control.			9
11	Workc	ells and cellular manufacturing: (Cell layout	and capacity	
	measur	es; design of workcells; worker assignme	ent; implemer	itation issues.	

COURSE NAME

L-T-P-C

YEAR

05ME 7343

	Scheduling for smooth flow: Production leveling; level scheduling in pull				
	production; master production scheduling.				
ш	Synchronising and balancing process: Synchronisation; bottleneck scheduling; balancing; adapting to schedule changes	10			
	Planning and control in pull production: Centralised planning and				
	control system; decentralised planning and control system; adapting MRP-				
	based production planning and control system to pull production	o			
IV		0			
	Maintaining and improving equipment: Equipment maintenance;				
	equipment effectiveness; total productive maintenance.				
	END SEMESTED EXAM (All Modules)				
	END SEWIESTER EXAMI (All Modules)				
REFEREN	CES:				
1. Haro	old J. Steudel and Paul Desruelle, "Manufacturing in the nineties - how to be	come a			
lean	, world - class competitor", Van Norstrand Reinhold, New York, 1992				
2. John	Nicholas, "Competitive manufacturing management - continuos improveme	nt, lean			
prod	uction, and customer-focused qualities", McGraw Hill International Edition, 1	998			
3. Ron	ald G. Askin& Jeffrey B. Goldberg, "Design and analysis of lean pro	duction			
syste	ems", John Wiley & Sons, 2003				

05ME 7343	COURSE NAME	L-T-P-C	YEAR
	SUSTAINABLE		
05ME 7351	MANUFACTURING	3-0-0-3	2015

COURSE OBJECTIVES:

To introduce students to the realm of sustainable engineering and inculcate in them the modern trends and challenges in the area of manufacturing related to the concepts of sustainability and environmental problems related to manufacturing, green engineering, etc.

COURSE OUTCOMES:

- 1. The importance of sustainable engineering will be thoroughly understood by students on the completion of the syllabus.
- 2. As the members of engineering community, students will be motivated to think about sustainability in various stages of manufacturing and their responsibility levels in the conservation of environment are expected to be enhanced, while achieving the organizational goals.

MODULE		HRS
Ι	SUSTAINABLE MANUFACTURING AND EMS: Sustainable Manufacturing –Evolution of Sustainable Manufacturing - Product Design for Sustainability – introduction to ISO 14000 series standards - Concepts of ISO 14001 - requirements of ISO 14001 – Environmental Management System – frame work and benefits - Environmentally Conscious Manufacturing.	9
Π	GREEN MANUFACTURING : Drivers of green production within business - Role of green production in competitive strategy - Motivations and Barriers to Green Manufacturing - Strategies for Green Manufacturing -Zero Emission Strategy - Environmental Impact of Manufacturing - The Development of Eco Labelling Schemes – guiding principles.	9

ш	RECYCLING & LIFE CYCLE ASSESSMENT: Industrial Ecology - key concepts - System Tools to Support Industrial Ecology –Life Cycle Design Methods-Life Cycle Assessment (LCA)– components and use – planning for LCA- Reclamation and Recycling of steel - postconsumer and pre consumer recycled material.	10
IV	ENVIRONMENTAL ATTRIBUTES OF MANUFACTURING: Environment process characterization- Manufacturing process inventory- input & outputs of casting, plastic processing, machining operations, forming operations, surface treatment and joining. Environmentally responsible manufacturing –general techniques. Environmental Footprint Analysis - Carbon and water footprint analysis - need to reduce the carbon footprint of manufacturing operations –Value stream mapping-Application of Value Stream Mapping to Eliminate Waste.	8
	END SEMESTER EXAM (All Modules)	
REFEREN 1. Mad Acad	CES: u, C.N., "Handbook of Environmentally Conscious Manufacturing", I lemic Publisher, 2001.	Kluwer

- Gupta, S.M. and Lambert, A.J.D., "Environment Conscious Manufacturing", CRC Press, 2008.
- 3. Swamidass, P.M., "Encyclopedia of Production and Manufacturing Management", Kluwer Academic Publisher, 2000.
- 4. Kutz, M.," Environmentally Conscious Mechanical Design", John Wiley & Sons, 2007.
- 5. Davim, J.P., "Sustainable Manufacturing", John Wiley & Sons, 2010.
- 6. Green manufacturing fundamentals and application, edited by David A. Dornfeld, springer publication, (2012)

05ME 7343	COURSE NAME	L-T-P-C	YEAR			
05ME 7353	FINITE ELEMENT METHOD	3-0-0-3	2015			
COURSE OBJE	CTIVES:					
Upon completion competencies	Upon completion of this course the student will be able to accomplish the following competencies					
1. To provide	the fundamental concepts of the theory of	the finite eler	nent method.			
2. To enable	the students to formulate the design proble	ems into FEM				
3. To introdu	ice basic aspects of finite element technolo	ogy, including	domain discret	ization,		
polynomia	l interpolation, application of boundary co	onditions, asse	mbly of global	arrays,		
and solution	n of the resulting algebraic systems.					
4. Develop fi	nite element formulation of engineering pr	oblems from	a variety of app	lication		
area incluc	ing stress, heat transfer and vibration analy	ysis				
COURSE OUTC	OMES:					
On completion of	this course the student will					
1. Unders	tanding the fundamental theory of the FE	A method;				
2. Develo	p the ability to generate the governing FE	E equations fo	r systems gover	rned by		
partial	differential equations;					
3. Unders	tand the use of the basic finite elements for	or structural a	oplications usin	g truss,		
beam,	rame, and plane elements; and					
4. Unders	tand the application and use of the FE met	hod for heat ti	ansfer problem	s.		
MODULE				HRS		
Basi	c concepts of FEM – a general procedure	for finite ele	ment analysis,			
brief	history of finite element method, linear	spring as a f	ïnite element,			
I elast	ic bar, spar/link/truss element. Strain	energy, Cast	igliano's first	9		
theory	em, minimum potential energy.					
	a structure of The direct stifferess moth - 1	Nodol constitu	ium constint			
	s structures: The direct summers method –	noual equilibit	ffnance matrice			
II bour	dary conditions constraint forces element	ent strain and	stress three	9		

dimensional trusses.

	Flexure - elements - elementary beam theory, flexure element, flexure			
	element stiffness matrix and element load vector, work equivalence for			
	distributed loads, flexure element with axial loading.			
	Method of weighted residuals - introduction, method of weighted			
	residuals, the Galerikin finite element method, application of Galerikin's			
	method to structural elements - spar element, beam element.			
ш	Interpolation function for general element formation – compatibility and completeness requirements, polynomial forms- one dimensional elements, triangular elements, rectangular elements, three dimensional elements, isoperimetric formulations, axisymmetric elements, numerical integration: Gaussian quadrature.	10		
	Applications in solid mechanics – plane stress, plane strain – rectangular			
	evidentent, isoparametric formulation of plane quadrilateral element,			
IN/	axisymmetric stress analysis, general three dimensional stress – mine	8		
1 V	clement formulations, strain and stress computations, practical			
	considerations. Torsion – boundary condition, torque. Introduction to FEM			
	software.			
	END SEMESTER EXAM (All Modules)	L		
REFEREN	CES:			
1. Dav	id V Hutton, "Fundamentals of finite element analysis", McGraw Hill			
2. Dary	l L. Logan, "First course in finite element method", Cengage Learning, Singa	pore.		
3. J. N. Reddy, "An introduction to the finite element method", McGraw Hill				
4. C. Zienkiwiez, "The finite element method", McGraw Hill, New York.				
5. K. H. Huebner, "The finite element method of engineers", John Wiley & Sons, New				
Yorl	York.			
L. J.	Segerlind, "Applied finite element analysis", John Wily & Sons, New York.			
L				

05ME 734.	3	COURSE NAME	L-T-P-C	YEAR	
05ME 7355		ARTIFICIAL INTELLIGENCE	3-0-0-3	2015	
COURSE	OBJECT	TVES:			
1. To :	introduce	the fundamental concepts of artificial int	elligence;		
2. То	equip stud	dents with the knowledge and skills in log	gic programm	ing;	
3. To	explore th	ne different paradigms in knowledge repro	esentation and	l reasoning;	
4. To	understan	d the contemporary techniques in machin	ne learning;		
5. To	evaluate	the effectiveness of hybridization	of different	artificial intel	ligence
tech	niques.				
COURSE	OUTCO	MES:			
After comp	leting the	course students should be able to:			
1. Uno	lerstand t	he history, development and various appl	ications of ar	tificial intellige	nce;
2. Fan	niliarize w	vith propositional and predicate logic and	their roles in	logic program	ming;
3. Lea	rn the ki	nowledge representation and reasoning	techniques i	n rule-based s	ystems,
case	e-based sy	vstems, and model-based systems;			
4. App	preciate l	now uncertainty is being tackled in t	the knowledg	ge representati	on and
reas	soning pro	ocess, in particular, techniques based or	n probability	theory and pos	ssibility
theo	ory;				
5. Ma	ster the s	kills and techniques in machine learnin	g, such as d	ecision tree ind	luction,
arti	ficial neu	ral networks, and genetic algorithm;			
	Apply ar	nd integrate various artificial intelligence	ce techniques	in intelligent	system
	developm	nent as well as understand the importance	of maintaining	ng intelligent sy	stems.
MODULE					HRS
	Human	n and machine intelligence: Conc	epts of fift	h generation	
		ting, programming in AI environm	ent, develop	ing artificial	
I intelligen		ence system, natural language processing	g, neural netw	orks.	9
	Introd	uction to fuzzy logic: Basic concep	ts in fuzzy	set theory –	
	operati	ons of fuzzy sets - fuzzy relational	equations –	propositional,	
<u> </u>					1

Industrial applications of fuzzy logic control – adaptive fuzzy systems – fuzzy decision making – fuzzy classification – fuzzy pattern recognition – image processing applications – fuzzy optimization. II Introduction to artificial neural networks: Fundamentals of neural networks – neural network architectures – learning methods – taxonomy of neural network architectures – standard back propagation algorithms – selection of various parameters – variations. Associative memory – exponential bidirectional associative memory – adaptive resonance theory – introduction – adaptive resonance theory 1 – adaptive resonance theory 2 – applications – Kohenself organizing maps – counter propagation networks – industrial applications. Expert system development: Definition, choice of domain, collection of knowledge base, selection of inference mechanism, case studies of expert system development in design and manufacturing. IV Recent advances: Fundamentals of genetic algorithms – hybrid systems – meta heuristic techniques like simulated annealing,tabu search, ant colony optimization, perpetual self organizing, artificial immune systems – applications in design and manufacturing.	DENI	END SEMESTER EXAM (All Modules)	
 industrial applications of fuzzy logic control – adaptive fuzzy systems – fuzzy decision making – fuzzy classification – fuzzy pattern recognition – image processing applications – fuzzy optimization. Introduction to artificial neural networks: Fundamentals of neural networks – neural network architectures – learning methods – taxonomy of neural network architectures – standard back propagation algorithms – selection of various parameters – variations. Associative memory – exponential bidirectional associative memory – adaptive resonance theory – introduction – adaptive resonance theory 1 – adaptive resonance theory 2 – applications – Kohenself organizing maps – counter propagation networks – industrial applications. Expert system development: Definition, choice of domain, collection of knowledge base, selection of inference mechanism, case studies of expert system development in design and manufacturing. Industrial application of AI and expert systems: Robotic vision systems, image processing techniques, application to object recognition and inspection, automatic speech recognition. 		Recent advances: Fundamentals of genetic algorithms – hybrid systems – neta heuristic techniques like simulated annealing,tabu search, ant colony ptimization, perpetual self organizing, artificial immune systems – pplications in design and manufacturing.	8
 industrial applications of fuzzy logic control – adaptive fuzzy systems – fuzzy decision making – fuzzy classification – fuzzy pattern recognition – image processing applications – fuzzy optimization. Introduction to artificial neural networks: Fundamentals of neural networks – neural network architectures – learning methods – taxonomy of neural network architectures – standard back propagation algorithms – selection of various parameters – variations. Associative memory – exponential bidirectional associative memory – adaptive resonance theory – introduction – adaptive resonance theory 1 – adaptive resonance theory 2 – applications – Kohenself organizing maps – counter propagation networks – industrial applications. Expert system development: Definition, choice of domain, collection of knowledge base, selection of inference mechanism, case studies of expert system development in design and manufacturing. 		ndustrial application of AI and expert systems: Robotic vision ystems, image processing techniques, application to object recognition nd inspection, automatic speech recognition.	
 industrial applications of fuzzy logic control – adaptive fuzzy systems – fuzzy decision making – fuzzy classification – fuzzy pattern recognition – image processing applications – fuzzy optimization. Introduction to artificial neural networks: Fundamentals of neural networks – neural network architectures – learning methods – taxonomy of neural network architectures – standard back propagation algorithms – selection of various parameters – variations. Associative memory – exponential bidirectional associative memory – 		daptive resonance theory – introduction – adaptive resonance theory 1 – daptive resonance theory 2 – applications – Kohenself organizing maps – ounter propagation networks – industrial applications. Expert system development: Definition, choice of domain, collection of nowledge base, selection of inference mechanism, case studies of expert ystem development in design and manufacturing.	10
industrial applications of fuzzy logic control – adaptive fuzzy systems – fuzzy decision making – fuzzy classification – fuzzy pattern recognition – image processing applications – fuzzy optimization.		ntroduction to artificial neural networks: Fundamentals of neural etworks – neural network architectures – learning methods – taxonomy of eural network architectures – standard back propagation algorithms – election of various parameters – variations.	
Fuzzy logic applications: Fuzzy logic controllers – principles – various		Yuzzy logic applications: Fuzzy logic controllers – principles – various ndustrial applications of fuzzy logic control – adaptive fuzzy systems – uzzy decision making – fuzzy classification – fuzzy pattern recognition – mage processing applications – fuzzy optimization.	9
fuzzy rule based systems – fuzzification and defuzzification – types.		redicate logic – inference – fuzzy logic principles – fuzzy inference – uzzy rule based systems – fuzzification and defuzzification – types.	

1. Robert Levine et al, "A comprehensive guide to AI and expert systems", McGraw Hill

Inc, 1986

- 2. Henry C. Mishkoff, "Understanding AI", BPB Publication, New Delhi, 1986
- 3. Peter Jackson, "Introduction to expert systems", First Indian Reprint, 2000, Addison Wesley
- 4. Stuart Russell and Peter Norvig, "Artificial intelligence: a modern approach", Prentice Hall, 1995
- 5. Elaine Rich et al., "Artificial intelligence", McGraw Hill, 1995
- Winston P H, "Artificial intelligence", Addison Wesley, Massachusetts, Third Edition, 1992

05ME 7343	COURSE NAME	L-T-P-C	YEAR			
05ME 7367	SEMINAR II	0-0-2-2	2015			
Each student shall p	prepare a seminar paper on any topic of	interest relat	ed to the core/elective			
courses being underg	gone in the second semester of the M. Te	ch. programn	ne. He/she shall get the			
paper approved by	the Programme Coordinator/Faculty M	Members in t	he concerned area of			
specialization and shall present it in the class in the presence of Faculty in-charge of seminar						
class. Every student shall participate in the seminar. Grade will be awarded on the basis of the						
student's paper, presentation and his/her participation in the seminar						

05ME 7343	COURSE NAME	L-T-P-C	YEAR
05ME 7387	PROJECT PHASE I	0-0-8-6	2015

The project (phase I) shall consist of research work done by the candidate or a comprehensive and critical review of any recent development in the subject of specialization or a detailed report of project work consisting of experimentation/numerical work, design and or development work that the candidate has executed.

In phase I of the project it is expected that the student should decide a topic of thesis, which is useful in the field or practical life. It is expected that students should refer national and international journals, proceedings of national and international seminars. Emphasis should be given to the introduction to the topic, literature review, and scope of the proposed work along with some preliminary work/experimentation carried out on the thesis topic.

Student should submit phase I project report in two copies covering the content discussed above and highlighting the features of work to be carried out in part I of the project. Student should follow standard practice of thesis writing.

The candidate will deliver a talk on the topic and the assessment will be made on the basic of the term work and talks there on by a panel of internal examiners one of which will be the internal guide. These examiners should give suggestions in writing to the student to be incorporated in project work phase II.

05ME 7343	COURSE NAME	L-T-P-C	YEAR		
05ME 7388	PROJECT PHASE II	0-0-21-12	2015		
In the fourth semester the student has continue project work and after successfully finishing the					
work, he / she has to	submit a detailed bounded thesis report.	The work can	ried out should lead to		
a publication in a National / International Journal or Conference. They should have submitted the					
paper before M. Tech. evaluation and specific weightage should be given to accepted papers in					
reputed journals or c	onferences.				

KERALA TECHNOLOGICAL UNIVERSITY

SCHEME AND SYLLABUS

FOR

M. Tech. DEGREE PROGRAMME

IN

COMPUTER SCIENCE AND ENGINEERING

WITH SPECIALIZATION

CYBER SECURITY

CLUSTER 05 (ERNAKULAM II)

KERALA TECHNOLOGICAL UNIVERSITY CET Campus, Thiruvananthapuram Kerala, India -695016

(2015 ADMISSION ONWARDS)

KERALA TECHNOLOGICAL UNIVERSITY

SCHEME AND SYLLABUS FOR M. Tech. DEGREE PROGRAMME

Branch: COMPUTER SCIENCE AND ENGINEERING

Specialization: CYBER SECURITY

SEMESTER – I

	Course No		L-T-P	Internal	End Sem	ester Exam	Credits
Exam Slot		Subjects		Marks	Marks	Duration (hrs)	-
А	05CS 6201	Mathematical Foundations For Cyber Security	3-1-0	40	60	3	4
В	05CS 6203	Advanced Data Structures and Algorithms	3-1-0	40	60	3	4
С	05CS 6205	Operating Systems And Security	3-1-0	40	60	3	4
D	05CS 6207	Cryptographic Protocols and Standards	2-1-0	40	60	3	3
Е	05CS 621x	Elective I	2-1-0	40	60	3	3
	05CS 6277	Research methodology	1-1-0	100	0	0	2
	05CS 6291	Information Security Lab	0-0-2	100	0	0	1
	<u>.</u>				•	<i></i>	21

Elective – I			
Course No	Subjects		
05CS 6211	Mobile Network Security		
05CS 6213	Information Risk Management		
05CS 6215	Data Mining and Machine Learning		

2

SEMESTER – II

Exam	Course No	Subjects	L-T- P	Intern al	End Exam	Semester	Credits
Slot		Jerre Jerre		Marks	Mark	Duration	
					s	(hrs)	
А	05CS 6202	Cyber Forensics	3-1-0	40	60	3	4
В	05CS 6204	Secure Coding	2-1-0	40	60	3	3
С	05CS 6206	Ethical Hacking	3-1-1	40	60	3	3
D	05CS 622x	Elective II	2-1-0	40	60	3	3
Е	05CS 623x	Elective III	2-1-0	40	60	3	3
	05CS 6266	Seminar I	0-0-2	100	0	0	2
	05CS 6288	Mini Project	0-0-4	100	0	0	2
		Ethical Hacking	0-0-2	100	0	0	1
	05CS 6292	And Digital					
		Forensic Tools					
		Lab					

Elective – II			
Course No	Subjects		
05CS 6222	Coding and Information Theory		
05CS 6224	Design of Secured Architecture		
05CS 6226	Digital Watermarking		

Elective – III		
Course No	Subjects	
05CS 6232	Cryptanalysis	
05CS 6234	Distributed and Cloud Computing	
05CS 6236	Storage management and Security	

SEMESTER – III

					End Semester Exam		
Exam Slot	Course No	Subjects	L-T-P	Internal Marks	Marks	Duration (hrs)	Credits
А	05CS 724x	Elective IV	2-1-0	40	60	3	3
В	05CS 725x	Elective V	2-1-0	40	60	3	3
	05CS 7267	Seminar II	0-0-2	100	0	0	2
	05CS 7287	Project (Phase 1)	0-0-8	50	0	0	6

14

	Elective – IV				
Course No	Subjects				
05CS 7241	Cloud Security				
05CS 7243	Cyber Laws and Security Policies				
05CS 7245	Biometric Security				
Elective – V					
Course No	Subjects				
05CS 7251	Internet Information and application security				
05CS 7253	Database Security				
05CS 7255	Dependable Distributed Systems				

SEMESTER – IV

Exam Slot	Course No	Subjects	L-T-P	Internal Marks	End Semester Exam		Credits
					Marks	Duration(hrs)	
	05CS 7288	Project (Phase 2)	0-0-21	70	30	-	12

12

Total :68

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 6201	MATHEMATICAL FOUNDATIONS FOR CYBER SECURITY	3-1-0-4	2015

COURSE OBJECTIVES:

- Introduces basic concepts and knowledge in number theory, together with a wide variety of interesting applications of discrete mathematics.
- Train students to solve problems from algorithm design and analysis, coding theory etc and to apply techniques of number theory in cryptography.

COURSE OUTCOMES:

- Number theory is intended to introduce students to number theoretic problems and to different areas of number theory.
- Number theory has many applications especially to coding theory and cryptography.
- Understand the ideas of group, ring and an integral domain and be aware of examples of these structures in mathematics.

MODULE	COURSE CONTENT (56 hrs)	HRS			
I	NUMBER THEORY: Introduction - Divisibility - Greatest common divisor - Prime numbers – Fundamental theorem of arithmetic - Mersenne primes - Fermat numbers - Euclidean algorithm - Fermat's theorem - Euler totient function - Euler's theorem. Congruences: Definition - Basic properties of congruences - Residue classes - Chinese remainder theorem.	14			
INTERNAL TEST 1(Module 1)					
II	ALGEBRAIC STRUCTURES: Groups – Subgroup, Cyclic groups, group homomorphisms, Permutation groups, Cosets, Modulo groups - Primitive roots – Discrete logarithms. Rings – Sub rings, ideals and quotient rings, Integral domains. Rings of polynomials, factorization of polynomials over a field. Fields – Finite fields – GF (p^n) , GF (2^n) - Classification - Structure of finite fields.	14			
INTERNAL TEST 2(Module 2)					
III	CODING THEORY: Introduction - Basic concepts: codes, minimum distance, equivalence of codes, Linear codes - Linear codes - Generator matrices and parity-check matrices - Syndrome decoding – Hamming codes - Hadamard Code - Goppa codes.	14			
IV	STOCASTICPROCESSandPSEUDORANDOMNUMBERGENERATION:RandomVariables– discrete and continuous- centralLimitTheorem-StochasticProcess-MarkovChain.Pseudorandomnumber	14			
generation: Introduction and examples - Indistinguishability of Probability					
---	--				
Distributions - Next Bit Predictors - The Blum-Blum-Shub Generator -					
Security of the BBS Generator.					

- 1. Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, 'An introduction to the theory of numbers', John Wiley and Sons 2004.
- 2. Douglas Stinson, 'Cryptography Theory and Practice', CRC Press, 2006.
- 3. Sheldon M Ross, "Introduction to Probability Models", Academic Press, 2003.
- 4. C.L. Liu, 'Elements of Discrete mathematics', McGraw Hill, 2008.
- 5. Fraleigh J. B., 'A first course in abstract algebra', Narosa, 1990.
- 6. Joseph A. Gallian, 'Contemporary Abstract Algebra', Narosa, 1998.

COURSE NAME	L-T-P-C	YEAR
ADVANCED DATA		
STRUCTURES AND	3-1-0-4 2015	2015
ALGORITHMS		2010
	COURSE NAME ADVANCED DATA STRUCTURES AND ALGORITHMS	COURSE NAMEL-T-P-CADVANCED DATASTRUCTURES ANDALGORITHMS3-1-0-4

- Familiarize with advanced data structures based trees and heaps.
- Learn to choose the appropriate data structure and algorithm design method for a specified application.
- Study approaches used to analyze and design algorithms and to appreciate the impact of algorithm design in practice.
- Learn different advanced algorithms in dynamic programming, flow network
- and computational geometry

COURSE OUTCOMES:

After completion of the course completion, the students will be able

- To compare different implementations of data structures and to recognize the advantages and disadvantages of the different implementations.
- To design, write, and analyze the performance of programs that handle structured data and perform more complex tasks, typical of larger software projects.
- To determine which algorithm or data structure to use in different scenarios.
- To demonstrate analytical comprehension of concepts such as abstract data, algorithms and efficiency analysis

MODULE	COURSE CONTENT (56 hrs)	HRS
I	Trees -Threaded Binary Trees, Selection Trees, Forests and binary search trees, Counting Binary Trees, Red-Black Trees, Splay Trees, Suffix Trees, Digital Search Trees, Tries- Binary Tries-patricia, Multiway Tries.	14
	INTERNAL TEST 1 (Module 1)	
п	Priority Queues - Single and Double Ended Priority Queues, Leftist Trees, Binomial Heaps, Fibonacci Heaps, Pairing Heaps, Symmetric Min-Max Heaps, Interval Heaps	14
	INTERNAL TEST 2 (Module 2)	
III	Analysis of Algorithms-review of algorithmic strategies, asymptotic analysis, solving recurrence relations through Substitution Method, Recursion Tree, and Master Method Dynamic Programming-Rod cutting-top down and bottom up approach, matrix chain multiplication-recursive solution, Longest common subsequence problem	14

IV	Maximum Flow-Flow Networks, Ford-Fulkerson method-analysis of Ford-Fulkerson, Edmonds-Karp algorithm, Maximum bipartite matching Computational Geometry- Line segment properties, Finding the convex hull, Finding the closest pair of points.	14
	Implementations using Python have to be conducted and evaluated for data structures and algorithms.	

- 1. Ellis Horowitz, SartajSahni, Susan Anderson Freed, Fundamentals of Data Structures in C, Second Edition, University Press, 2008
- 2. YedidyahLangsam, Moshe J. Augenstein, Aaron M. Tenenbaum, Data Structures using C and C++, Second Edition, PHI Learning Private Limited, 2010
- 3. Thomas Cormen, Charles, Ronald Rives, Introduction to algorithm,3rd edition, PHI Learning
- 4. Ellis Horowitz and SartajSahni, SanguthevarRajasekaran, Fundamentals of Computer Algorithms, Universities Press, 2nd Edition, Hyderabad.
- 5. Sara Baase& Allen Van Gelder, Computer Algorithms Introduction to Design and Analysis, Pearson Education..
- 6. AnanyLevitin, Introduction to The Design & Analysis of Algorithms, Pearson Education, 2nd Edition, New Delhi, 2008.
- 7. Berman and Paul, Algorithms, Cenage Learning India Edition, New Delhi, 2008.
- 8. S.K.Basu, Design Methods And Analysis Of Algorithms, PHI Learning Private Limited, New Delhi, 2008.
- 9. Jon Kleinberg and Eva Tardos, Algorithm Design, Pearson Education, NewDelhi, 2006.
- 10. Hari Mohan Pandey, Design Analysis And Algorithms, University Science Press, 2008.
- 11. R. Panneerselvam, Design and Analysis of Algorithms, PHI Learning Private Limited, New Delhi, 2009.
- 12. UditAgarwal, Algorithms Design And Analysis, DhanapatRai& Co, New Delhi, 2009.
- 13. Aho, Hopcroft and ullman, The Design And Analysis of Computer Algorithms, Pearson Education, New Delhi, 2007.
- 14. S.E.Goodman and S. T. Hedetmiemi, Introduction To The Design And Analysis Of Algorithms, McGraw-Hill International Editions, Singapore 2000.
- 15. Richard Neapolitan, Kumarss N, Foundations of Algorithms, DC Hearth &company. Sanjay Dasgupta, Christos Papadimitriou, UmeshVazirani, Algorithms, Tata McGraw-Hill Edition.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 6205	OPERATING SYSTEM AND SECURITY	3-1-0-4	2015

- Introduce students to the field of threads and vulnerabilities in OS and how to provide security in different OS.
- Focuses on the study of techniques of fundamentals of protection systems, Information flow and Security kernels. This course also deals with a couple of case studies.

COURSE OUTCOMES:

Upon completion, the student will be able to

- Understand the basic of securing an operating system.
- Understand the principles of trusted systems, Information flow integrity and securing commercial OS.
- Understand the security challenges with the help of case studies.

MODULE	COURSE CONTENT (42 hrs)	HRS
I	Introduction: Secure Os, Security Goals, Trust Model, Threat Model, Access Control. Fundamentals: Protection system, Lampson's Access Matrix, Mandatory protection system. Multics: Fundamentals, multics protection system models, multics reference model, multics security, multics vulnerability analysis.	11
	INTERNAL TEST 1 (Module 1)	
п	Security in ordinary operating system: UNIX security, windows security Verifiable security goals: Information flow, information flow secrecy, models, information flow integrity model, the challenges of trusted, process, covert channels.	11
	INTERNAL TEST 2 (Module 2)	
III	Security Kernels: The Security Kernels, secure communications, processor Scomp, Gemini secure OS, Securing commercial OS, Retrofitting security into a commercial OS, History Retrofitting commercial OS, Commercial era, microkernel era, UNIX era- IX, domainand type enforcement.	10
IV	Case study: Solaris Extensions Trusted extensions, access control, Solaris compatibility, trusted extensions, mediations process rights management, role based access control, trusted extensions, networking trusted extensions, multilevel services, trusted extensions administration. Case study: Building secure OS for Linux: Linux security modules, security enhanced Linux.	10

- 1. Trent Jaeger, Operating system security, Morgan & Claypool Publishers, 2008
- 2. Michael Palmer, Guide to Operating system Security Thomson
- 3. Andrew S Tanenbaum, Modern Operating systems, 3rd Edition
- 4. Secure Operating Systems. John Mitchell. Multics-Orange Book-Claremont
- 5. Reading: Nachenberg, Computer Virus-Antivirus Coevolution. Comm. ACM, 40(1), pp. 46-51, January 1997.
- 6. Paxson, Bro: A System for Detecting Network Intruders in Real-Time. Proc. 7th USENIX Security Symposium, San Antonio, TX, January 1998

COURSE (CODE	COURSE NAME	L-T-P-C	YEAR	
05CS 62	207	CRYPTOGRAPHIC PROTOCOLS AND STANDARDS	3-1-0-3	2015	
COURSE O)BJECT	TIVES:			
• To E key a	Enable Lo establish	earner to understand various goals for de ment protocols.	esigning a sec	ure authenticat	ion and
• Anal	yze vari	ous existing protocols in terms of the goa	ls.		
COURSE O	DUTCO	MES:			
• Will	able to	design a key agreement or key transp	port or key e	establishment p	orotocol
satis	fying va	rious security goals.			
• Will	able to	verify the security of a cryptographic	protocol desig	gned and analy	zes the
comj	plexity o	f it.			
MODULE		COURSE CONTENT (5	6 hrs)		HRS
	Goals f	for authentication and Key Establishmer	nt: Basic Go	als, Enhanced	
Ι	Goals,	Goals concerning compromised Keys	s, Formal V	erification of	1/
	Protoco	ols, Complexity Theoretic Proofs of Secu	rity.		14
		INTERNAL TEST 1 (Modu	le 1)		
	Protoco	ols Using Shared Key Cryptograph	y: Entity A	Authentication	
II	Protoco	ols, Server-Less Key Establishme	ent, Server	-Based Key	14
	Establi	shment, Key Establishment Using Multip	ole Servers.		
		INTERNAL TEST 2 (Modu	le 2)		
	Authen	tication and Key Transport Using F	ublic Key	Cryptography:	
	Design	Principles for Public Key Protoco	ols, Entity A	Authentication	
	Protoco	ol, Key Transport Protocols. Key A	greement Pr	otocols: Key	14
III	Contro	l, Unknown Key-Share Attacks, Classes	of Key Agre	ement: Diffie-	14
	Hellma	in Key Agreement, MTI Protocols, Diffi	e-Hellman-Ba	ased Protocols	
	with Ba	asic Message Format and with Ennanced	Message For	mat. ID based	
	Confer	ence Key Protocols: Generalizing Diffie	Hellman Ke	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
	Confer	ence Key Agreement Protocols. Identi	ty-Based Co	nference Kev	14
IV	Protoco	bls, Conference Key Agreement	without D	iffie-Hellman,	14
	Confer	ence Key Transport Protocols, Key Broa	dcasting Proto	ocols	

- 1. Collin Boyd and AnishMathuria, "Protocols for Authentication and Key Establishment", Springer; 2010.
- 2. Abhijith Das and C.E. VeniMadha van, "Public-key Cryptography, Theory and Practice", Pearson Education, 2009.
- 3. Alfred J. Menezes, Paul C. Van Oorschot and Scott A. Vanstone, "Handbook of Applied Cryptography", CRC Press, 1996.

COURSE C	CODE	COURSE NAME	L-T-P-C	YEAR	
05CS 62	211	MOBILE NETWORK SECURITY	3-1-0-3	2015	
COURSE C)BJECT	TIVES:			
The main of the realm of	ojective wireless	of the course is to introduce the students s networks	to security ar	nd privacy prob	lems in
CreaGain new	 Creates Understanding about the basics of wireless technologies and security. Gain in - depth knowledge on wireless and mobile network security and its relation to the new security based protocols 				
Appl intru	y proac sions	ctive and defensive measures to cour	nter potential	threats, attac	ks and
• Desi mini	gn secu mizing v	red wireless and mobile networks truinerability to security risks	that optimize	e accessibility	whilst
COURSE C Upon compl	etion, th	MES: the student will be able to			
 Ident wirel Appl 	tify and less netv ly proact	investigate in-depth both early and co vorks security. tive and defensive measures to deter and	ontemporary I repel potent	threats to mob	ile and cks and
intru Deve diver	sions. elop a cl	ear view of integrated security environn	nents consisti	ng of both sim	ilar and
MODULE	MODULECOURSE CONTENT (42 hrs)HRS				
I	Transmission Fundamentals: Antennas and Wave Propagation. Cellular Wireless networks, Third Generation Systems, 4G Long Term Evolutions, Signal Encoding Techniques, Spread Spectrum, Coding and Error Control, Multiple Access in Wireless Systems.		11		
		INTERNAL TEST 1 (Modu	le 1)		
п	Satellit an Ult Protoco LAN S	te Networks, Wireless System Operation tra Wide Band technologies, Mobile ol. Wireless LAN Technology, Wi-Fi a trandard, Blue-tooth and IEEE 802.15 sta	ns and Stand IP and Win and IEEE 80 andard.	ards, Wi-Max reless Access 2.11 Wireless	11
	1	INTERNAL TEST 2 (Modu	le 2)		
ш	Threats device Challer monito Surveil Points,	s to Wireless networks, ESM, ECM ar and technologies, Practical aspects, Winges, Risks: Denial of Service, Insertion oring wireless traffic, MIS configur llance, War Driving, Client-to-Client Jamming and Denial of Service.	nd ECCM, Princeless availal n Attacks, Information, Wire Hacking, R	roliferation of pility, Privacy terception and less Attacks, logue Access	10

IVAuthentication, Encryption/Decryption in GSM, Securing the WLAN,
WEP Introduction, RC4 Encryption, Data Analysis, IV Collision, Key
Extraction, WEP Cracking, WPA/ WPA2, AES, Access Point-Based
Security Measures, Third- Party Security Methods, Funk's Steel-Belted
Radius, WLAN Protection Enhancements, Blue-tooth Security
Implementation, Security in Wi- MAX, UWB security, Satellite network
security.

END SEMESTER EXAM (ALL Modules)

- 1 KavehPahlavan and PrashantKrishnamurthy,"Principles of Wireless Networks", Prentice -Hall, 2006.
- 2 Cyrus Peikari and Seth Fogie, "Maximum Wireless Security" Sams, 2002.
- 3 Hideki lmai, Mohammad GhulamRahman and KazukuniKobari "Wireless Communications Security", Universal Personal Communications of Artech House, 2006.
- 4 Stallings William, "Wireless Communications and Networks" Second Edition, Pearson Education Ltd, 2009.
- 5 Jon Edney and William A. Arbaugh, "Real 802.11 Security: Wi-Fi Protected Access and 802.11i", Addison-Wesley Professional, 2003.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 6213	INFORMATION RISK MANAGEMENT	3-1-0-3	2015

- To understand the processes and measures that is used to manage risk to business critical information in an increasingly challenging cyber security environment.
- Examine the way in which business and society make an assessment of, control and transfer risk.
- To engage students in active discovery of risk management principles.

COURSE OUTCOMES:

Upon completion, the student will be able to

- Understand the structured process that is used to manage the risk to information and data.
- Realize what a business must, should or could do to address its risks.
- Recognize the challenges unique to deploying the security measures.

MODULE	COURSE CONTENT (42 hrs)	HRS
Ι	Information Risk Management: Definitions and relationships among different security components - threat agent, threat, vulnerability, risk, asset, exposure and safeguards; Governance models such as COSO and COBIT, ISO 27000 series of standards for setting up security programs.	11
	INTERNAL TEST 1 (Module 1)	
п	Risk analysis and management, policies, standards, baselines, guidelines and procedures as applied to Security Management program, Information strategy objectives.	11
	INTERNAL TEST 2 (Module 2)	
III	Security awareness and training. Security Architecture and Design: review of architectural frameworks (such as Zachman and SABSA), concepts of Security Models (such as Bell-LaPadula, Biba and Brewer-Nash), vulnerabilities and threats to information systems (such as traditional on- premise systems, web based multi-tiered applications, distributed systems and cloud based services), application of countermeasures to mitigate against those threats and security products evaluation.	10
IV	Business Continuity and Disaster Recovery: Business Continuity Management (BCM) concepts, Business Impact Analysis, BC/DR Strategy development, backup and offsite facilities and types of drills and tests. An introduction to Operational Security and Physical security aspects.	10

- 1. Alan Calder and Steve G. Watkins, "Information Security Risk Management for IS027001 /IS027002", IT Governance Ltd, 2010.
- 2. Susan Snedaker, "Business Continuity and Disaster Recovery Planning for IT Professionals", Elsevier Science & Technology Books, 2007.
- 3. Harold F Tipton and Micki Krause, "Information Security Management Handbook", Volume 1, Sixth Edition, Auerbach Publications, 2003.
- 4. Andreas Von Grebmer, "Information and IT Risk Management in a Nutshell: A Pragmatic Approach to Information Security" Books on Demand, 2008.
- 5. Evan Wheeler, "Security Risk Management", Elsevier, 2011.
- 6. Ian Tibble,"Security De-Engineering: Solving the Problems in Information Risk Management", CRC Press, 2012.

COURSE C	CODE	COURSE NAME	L-T-P-C	YEAR	
05CS 62	215	DATA MINING AND MACHINE LEARNING	3-1-0-3	2015	
COURSE C)BJECT	TVES:			
• Intro	duce stu	dents to the field of data mining and mac	hine learning	process.	
• Focu featu world	ises on ire selec d proble	the study of techniques of clustering, tion and visualization to real world da m has a data mining solution.	classification ta and detern	n, association a nining whether	finding, a real
COURSE C	DUTCO	MES:			
Upon compl Unde Appl Accu hypo	letion, th erstand th ly superv urately e otheses.	e student will be able to he basic data mining and machine learnir vised and unsupervised learning algorithm evaluate the performance of algorithm	ng algorithms ns to predictions ns, as well a	on problems. as formulate a	nd test
MODULE		COURSE CONTENT (4	2 hrs)		HRS
I	 Introduction- Data Mining, Machine Learning, Review of Cybersecurity Solutions. Classical Machine-Learning Paradigms for Data Mining - Fundamentals of Supervised Machine-Learning, Popular Unsupervised Machine-Learning Methods, Improvements on Machine-Learning Methods, Challenges in Data Mining, Challenges in Machine Learning 		11		
		INTERNAL TEST 1 (Modu	le 1)		
п	Superv Applica Artifici Progran Learnir in An Anoma	ised Learning for Misuse/Signature De ations in Misuse Detection- Rule-B al Neural Network, Support Ve mming, Decision Tree and CART, Ba ng for Anomaly Detection- Anomaly Det omaly Detection Systems, Machine- ly Detection.	etection- Mac ased Signate ector Mach ayesian Netwe etection, Mac Learning Ap	hine-Learning ure Analysis, ine, Genetic ork. Machine hine Learning oplications in	11
		INTERNAL TEST 2 (Modu	le 2)		
III	Machir Learnir Applica Detecti Machir Technir Technir Learnir Learnir	he Learning for Hybrid Detection- H ng in Hybrid Intrusion Detection Sy ations in Hybrid Intrusion Detection. M on- Scan and Scan Detection, Machine I he-Learning Applications in Scan ques, Machine Learning for Profiling Profiling and Related Network Tra ng and Network Traffic Profiling, D ng Applications in Network Profiling.	ybrid Detect ystems, Mac Aachine Lear Learning in S Detection, Network Tra ffic Knowled ata-Mining a	ion, Machine hine-Learning ning for Scan can Detection, Other Scan ffic- Network dge, Machine and Machine-	10

 Privacy-Preserving Data Mining- Privacy Preservation Techniques in PPDM, Workflow of PPDM, Data-Mining and Machine-Learning Applications in PPDM- Privacy Preservation Association Rules, Privacy Preservation Decision Tree, Privacy Preservation Bayesian Network, Privacy Preservation KNN, Privacy Preservation k-Means Clustering. Emerging Challenges in Cyber security- Network Monitoring, Profiling, and Privacy Preservation, Challenges in Intrusion Detection.

- 1. SumeetDua and Xian Du, "Data Mining and Machine Learning in Cyber security" CRC press, Auerbach Publications 2011.
- 2. Christopher Westphal," Data Mining for Intelligence, Fraud & Criminal Detection: Advanced Analytics & Information Sharing Technologies" CRC Press, 2008.
- 3. Marcus A. Maloof, "Machine Learning and Data Mining for Computer Security: Methods and Applications" Springer Science & Business Media, 2006.
- 4. Jesus Mena," Machine Learning Forensics for Law Enforcement, Security, and Intelligence", CRC Press, 2011.
- 5. Ian H. Witten, Eibe Frank, Mark A. Hall," Data Mining: Practical Machine Learning Tools and Techniques", Elsevier, 2011.

COURSE CODE		COURSE NAME	L-T-P-C	YEAR	
05CS 62	277	RESEARCH METHODOLOGY	1-1-0-2	2015	
COURSE ()BJEC]	TIVES:		L	
• A • F • F • COURSE C • A • F • V MODULE	Aware of Familiari Preparati DUTCO Able to d Effective Write res Introdu researc literatu Reproc	f the research process. ize the tools and skills to investigate a rese on of an effective report. MES: to research in a systematic way. to use of appropriate tools for samples and search proposals and reports. COURSE CONTENT (2) action-Tools for Planning Research, Fight the skills, Evaluating and citing resour- ure review – problem definition hugible research focus on the concepts	earch. data collection 8 hrs) inding resour- rces, publish	n. rces, internet ing research-	HRS
I	Reproducible research-focus on the concepts and tools behind reporting modern data analyses in a reproducible manner. (Students are expected set up a GitHub account and/or take part in collaborative projects such as Mozilla Science Lab,Linux Foundation , Wikis or technical blogging)				7
		INTERNAL TEST 1 (Modu	le 1)		
II	Sampli probab Sampli Tools field su simula editing scaling reliabil practic	ing fundamentals -Types of samplin bility sampling. ing theory, sampling distribution and s and techniques of data collection: Ques urveys, interview, observation, tion, experimental and case study meth s, coding and g of data. Scale classification and types lity and ality.	g: probabili sample size o stionnaire and ods. Collection. Measureme	ty and non- determination. I schedule for on, recording, nt of validity,	7
		INTERNAL TEST 2 (Modu	le 2)		
III	Descriptesting testing - chi sc standar non pa tests, f only).	ptive and inferential statistics - Data and of hypothesis, of population mean, variance and propor quare test.— rd error of the estimate. Testing goodness rametric factor analysis, discriminant analysis and	nalysis and ir rtion –Z test – of fit. Brief i l path analysi	terpretation – - t test – F test ntroduction to is (description	7
IV	Meanin interpro Presen Guidel	ng of interpretation and inference: eting results. tation of reports: structure and style. I ines for writing	importance a	and care for search report.	7

research papers and reports –. Ethics in research. Use of computers and internet in research.

Familiarization with Online tools for computer science researchers

Case Study: Familiarize Latex software for report preparation. Students have to take up a case study on particular samples and conclude with some hypothesis. A report of the same has to be submitted by the student at the end of this course.

END SEMESTER EXAM (ALL Modules)

REFERENCES:

1. C. R. Kothari, Research Methodology, Methods and techniques (New Age International Publishers, New Delhi, 2004).

2. R. Panneerseklvam, Research Methodology (Prentice Hall of India, New Delhi, 2011).

3. Ranjit Kumar, Research Methodology, A step by step approach (Pearson Publishers, New Delhi, 2005.

4. Management Research Methodology : K. N. Krishnaswami, AppaIyer and M Mathirajan, Pearson Education, Delhi, 2010

5. Hand Book of Research Methodology : M N Borse, SreeNivas Publications, Jaipur, 2004

6. Business Research Methods: William G Zikmund, South – Western Ltd, 2003

7. Research Methods in Social Science: P K Majumdar, Viva Books Pvt Ltd, New Delhi, 2005

8. Analyzing Quantitative Data: Norman Blaikie, SAGE Publications , London, 2003

Web References:

Module 1

http://help.library.ubc.ca/evaluating-and-citing-sources/evaluating-information-sources/ http://www.vtstutorials.ac.uk/detective/

http://connectedresearchers.com/online-tools-for-researchers/

https://www.ucl.ac.uk/isd/services/research-it/research-software/infrastructure/github/signup https://www.mozillascience.org/training

https://www.ucl.ac.uk/isd/services/research-it

http://researchkit.org/

https://www.cs.ubc.ca/our-department/facilities/reading-room/research-publications/research-tools

Module 4

http://www.i-studentglobal.com/study-programmes/science-engineering-computing-technology/50-essential-online-tools-for-every-computer-science-student

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 6291	INFORMATION SECURITY LAB	0-0-2-1	2015

• The main objective this practical session is that students will get the exposure to various tools and programming methods using in information security.

COURSE OUTCOMES:

By the completion of this laboratory session Student

- Will gain the knowledge on perl and Shell scripting languages to implement various security attacks.
- Will get the ideas in various ways to trace an attacker.
- Will get the practical exposure to software firewall, port monitoring etc....

The following programs should be implemented preferably on platform Windows/Linux through perl, shell scripting language and other standard utilities available with LINUX systems. :-

- 1. Write a perl script to concatenate ten messages and transmit to remote server
 - a. Using arrays
 - b. Without using arrays.
- 2. Write a perl script to implement following functions:
 - a. Stack functions
 - b. File functions
 - c. File text functions
 - d. Directory functions
 - e. Shift, unshift, Splice functions.
- 3. Write a Perl script to secure windows operating systems and web browser by disabling Hardware and software units.
- 4. Write a perl script to implement Mail bombing and trace the hacker.
- 5. Write a shell script to crack LINUX login passwords and trace it when breaking is happened.
- 6. Working with Sniffers for monitoring network communication (Ethereal)
- 7. Understanding of cryptographic algorithms and implementation of the same in C or C++.
- 8. Using open SSL for web server browser communication
- 9. Using GNU PGP
- 10. Performance evaluation of various cryptographic algorithms
- 11. Using IP TABLES on Linux and setting the filtering rules
- 12. Configuring S/MIME for e-mail communication

- 13. Understanding the buffer overflow and format string attacks
- 14. Using NMAP for ports monitoring
- 15. Implementation of proxy based security protocols in C or C++ with features like confidentiality, integrity and authentication

FOLLOWING ARE SOME OF THE WEB LINKS, WHICH HELP TO SOLVE

THE ABOVE ASSIGNMENTS:

- http://linuxcommand.org/man_pages/openssl1.html
- http://www.openssl.org/docs/apps/openssl.html
- http://www.queen.clara.net/pgp/art3.html
- http://www.ccs.ornl.gov/~hongo/main/resources/contrib/gpg-howto/gpg-howto.html
- https://netfiles.uiuc.edu/ehowes/www/gpg/gpg-com-0.htm
- http://www.ethereal.com/docs/user-guide/

COURSE C	CODE	COURSE NAME	L-T-P-C	YEAR	
05CS 6	202	CYBER FORENSICS	3-1-0-4	2015	
COURSE C)BJECT	'IVES:			
 The main objective of the course is to introduce the students to bring awareness in crimes and tracing the attackers. Define digital forensics from electronic media. Describe how to prepare for digital evidence investigations and explain the differences between law enforcement agency and corporate investigations. Explain the importance of maintaining professional conduct 					
COURSE C	DUTCO	MES:			
Upon compl	etion, th	e student will be able to			
• Utili	ze a syst	ematic approach to computer investigation	ons.		
• Utili	ze variou	is forensic tools to collect digital evidence	e.		
Perfe	orm digit	al forensics analysis upon networks and	network devic	ces.	
Perio MODULE	orm web	COURSE CONTENT (4)	7 hrs)		HRS
MODULE	Criber	formation in Color formation		of Commutan	
I	I Cyber forensics Introduction to Cyber forensics, Type of Computer Forensics Technology- Type of Vendor and Computer Forensics Services. Information Security Investigations, Corporate Cyber Forensics, Scientific method in forensic analysis, investigating large scale Data breach cases, Analyzing Malicious software.				11
		INTERNAL TEST 1 (Modu	le 1)		
Π	Digital World, Investig Compu collecti Eviden	Evidence in Criminal Investigations. Training and Education in digital evider gating Cybercrime, Duties Support Fun- ter Forensics Evidence and Capture- on and Data Seizure-Duplication and ce-Computer image verification and Auth	The Analog nce, the digitanctions and C Data Record preservation	g and Digital l crime scene, Competencies. very-Evidence on of Digital	11
INTERNAL TEST 2 (Module 2)					
III	Investig Investig attacks Electro networ	gating Network Intrusions and Cyber Cri gating logs, Investigating network T , Router Forensics. Computer Forensic nic Evidence- Identification of data- R ks	me, Network raffic, Inves cs Analysis- acconstructing	Forensics and tigating Web Discovery of g Past events-	10

IV	Countermeasure: Information warfare- Surveillance tool for Information warfare of the future-Advanced Computer Forensics. Cyber forensics tools and case studies.	10			
END SEMESTER EXAM (ALL Modules)					
REFEREN	ICES:				
1	Understanding Cryptography: A Textbook for Students and Practition Christofpaar, Jan Pelzl.	ers:			
2	Live Hacking: The Ultimate Guide to Hacking Techniques & Countermeasu for Ethical Hackers & IT Security Experts Ali Jahangiri	ures			
3	Handbook of Digital and Multimedia Forensic Evidence [Paperback] Joh Barbara	n J.			
4	Computer Forensics: Investigating Network Intrusions and Cyber Crime (Council Press Series: Computer Forensics)	(Ec-			
5	Cyber Forensics: Understanding Information Security Investigations (Spring Forensic Laboratory Science Series) by Jennifer Bayuk	ger's			
6	Information warfare : Information warfare and security: (ACM Press) Dorothy Elizabeth Robling Denning	by			
7	Cyberwar and Information Warfare : Springer's by Daniel Ventre				
8	Computer forensics: computer crime scene investigation, Volume 1 (Cha River Media, 2008) By John R. Vacca	urles			

COURSE C	DURSE CODECOURSE NAMEL-T-P-CYEAR				
05CS 62	204	SECURE CODING	3-1-0-3	2015	
 COURSE OBJECTIVES: Students shall understand vulnerabilities in coding, identify, and remediate them. COURSE OUTCOMES: 					
Upon compl	etion, th	e student will be able			
• To u	tilize a s	ystematic approach to secure coding java	and web app	lications.	
MODULE		COURSE CONTENT (4	2 hrs)		HRS
Ι	Introdu in C Manipu Organi Vulner Data P .dtors S longjm	action, Security concepts, Security Archi and C++, Strings - String Charact alation Errors, String Vulnerabili zation, Stack Smashing, Code Injection abilities. Pointer Subterfuge - Data Lo ointers, Modifying the Instruction Pointer Section, Virtual Pointers, The atexit() ar p() Function, Exception Handling.	tecture - Prin teristics, Con ities, Proce on, Arc Injec ocations, Func r, Global Off nd on_exit() F	ciples, coding mmon String ass Memory ction, Notable ction Pointers, set Table, The Functions, The	11
		INTERNAL TEST 1 (Modu	le 1)		
п	Dynam Manag Securit Operati Vulner	ic Memory Management - Com- ement Errors, Doug Lea's Memory A y - Integers, Integer Conversions, Integer ions, Vulnerabilities, Nonexceptional Int abilities in Dynamic Memory Manageme	mon Dynan Illocator, Rtl er Error Cond eger Logic E ent and Intege	nic Memory Heap, Integer itions, Integer rrors, Notable r Security	11
		INTERNAL TEST 2 (Modu	le 2)		
ш	Format Exploit Concur Lockin	ted Output - Variadic Functions, For ting Formatted Output Functions, Stack rrency, Time of Check, Time of Use, g, File System Exploits.	matted Outp Randomizati Files as Lo	out Functions, on. File I/O - ocks and File	10
IV	Web A (XSS, 1 (XSS), Fields:- Spottin Steps.	Application, SQL Injection, Web Serv XSRF, and Response Splitting), Web Cli Use of Magic URLs, Predictable Co - Overview, CWE References, Affe ag the Pattern, Code Review, Testing	ver–Related v ent–Related v pokies, and cted Langua Techniques	Vulnerabilities Vulnerabilities Hidden Form ges, Explain, , Redemption	10

- 1. Robert C. Seaford, "Secure Coding in C and C++", Addison-Wesley Professional, 2005.
- 2. Mark G. Graff, Kenneth R. van Wyk, "Secure Coding: Principles & Practices" O'Reilly, 2003
- 3. Michael Howard, David LeBlanc, and John Viega, "24 DEADLY SINS OF SOFTWARE SECURITY" McGraw-Hill Companies, 2010.
- 4. James A. Whittaker and Herbert H. Thompson, "How to Break Software Security", Addison Wesley, 2003.
- 5. John C. Mitchell and Krzysztof Apt, "Concepts in Programming Languages", Cambridge University Press, 2001.

COURSE CODE		COURSE NAME	L-T-P-C	YEAR		
05CS 6	206	ETHICAL HACKING 3-1-1-3 2015				
COURSE O)BJECT	TIVES:				
• To re	• To render all the techniques used for penetration testing for performing security auditing.					
• To tr	ansform	the internet security industry by infusing	g professional	ism and efficier	icy.	
COURSE C	OUTCO.	MES:				
By the end of Lear	of the cou	urse students will s backing methods				
Perfe	orm syste	em security vulnerability testing.				
Perfe	orm syste	em vulnerability exploit attacks.				
Prod	uce a sec	curity assessment report				
• Lear	• Learn various issues related to hacking.					
MODULE		COURSE CONTENT (5	6 hrs)		HRS	
I	Casing the Establishment - What is footprinting- Internet Footprinting Scanning-Enumeration - basic banner grabbing, Enumerating Common Network services. Securing permission - Securing file and folder permission. Using the encrypting file system. Securing registry permissions. Securing service- Managing service permission. Default services in windows 2000 and windows XP. Unix - The Quest for Root. Remote Access vs Local access. Remote access. Local access. After hacking root.				9	
		INTERNAL TEST 1 (Modu	le 1)			
п	Dial-up Dialing hacking Public Layer 2	p ,PBX, Voicemail, and VPN hacking - g. Brude-Force Scripting PBX hacking. g. Network Devices – Discovery, Aut Newsgroups. Service Detection. Networ 2 Media.	Preparing to Voice mail h onomous Sys rk Vulnerabil	dial up. War- acking . VPN stem Lookup. ity. Detecting	9	
	INTERNAL TEST 2 (Module 2)					
III	Wireles Enume Denial Identifi Proxy Attacke DoS	ss Hacking - Wireless Foot printing pration. Gaining Access. Tools that ex- of Services Attacks. Firewalls- Fire ication-Scanning Through firewalls- pac Vulnerabilities . Denial of Service Att ers. Types of DoS attacks. Generic Dos A	Wireless S xploiting WE walls landsc cket Filtering acks - Motiv Attacks. Unix	Scanning and EP Weakness. ape- Firewall g- Application vation of Dos and Windows	10	

IVRemote Control Insecurities - Discovering Remote Control Software.
Connection. Weakness.VNC . Microsoft Terminal Server and Citrix ICA
.Advanced Techniques Session Hijacking. Back Doors. Trojans.
Cryptography . Subverting the systems Environment. Social Engineering.
Web Hacking. Web server hacking web application hacking. Hacking the
internet User - Malicious Mobile code, SSL fraud, E-mail Hacking, IRC
hacking, Global Counter measures to Internet User Hacking.

END SEMESTER EXAM (ALL Modules)

References:

- 1. Stuart McClure, Joel Scambray and Goerge Kurtz, "Hacking Exposed Network Security Secrets & Solutions", Tata Mcgrawhill Publishers, 2010.
- 2. Bensmith, and Brian Komer, "Microsoft Windows Security Resource Kit", Prentice Hall of India, 2010.

8

COURSE O	CODE	COURSE NAME	L-T-P-C	YEAR	
05CS 6	5222	CODING AND INFORMATION THEORY	3-1-0-3	2015	
COURSE O)BJECT	TIVES:			
• (c	Covers i communi	information theory and coding within cations applications.	n the contex	xt of modern	digital
•] i:	To help ntuitivel	students in quantify the notion of inf y sound way.	ormation in	a mathematica	lly and
• E b	Explainir ouild effi	ng how this quantitative measure of inf cient solutions to multitudinous engineer	formation ma	y be used in c	order to
COURSE (DUTCO	MES:			
By the end of	of the cou	urse students will			
 Learn various error control methods 					
MODULE		COURSE CONTENT (4	2 hrs)		HRS
I	Source Coding - Introduction to information theory, uncertainty and information, average mutual information and entropy, source coding theorem, Shannon-fano coding, Huffman coding, Arithmetic coding, Lempel-Ziv algorithm, run-length encoding and rate distortion function.			11	
	1	INTERNAL TEST 1 (Modu	le 1)		
п	Channel capacity and coding - channel models, channel capacity, channel coding, information capacity theorem, random selection of codes. Error control coding: linear block codes and their properties, decoding of linear block code, perfect codes, hamming codes, optimal linear codes and MDS codes.			11	
INTERNAL TEST 2 (Module 2)					
III	Cyclic for gen correct cyclic BCH c codes.	codes - polynomials, division algorithm lerating cyclic codes, matrix description ion, fire codes, golay codes, CRC codes codes. BCH codes: minimal polynomials codes, decoding of BCH codes, Reed-S	for polynom of cyclic cod s, circuit impl s, generator p Solomon cod	ials, a method les, burst error lementation of polynomial for es and nested	10

Convolutional codes - tree codes and trellis codes, polynomial description of convolutional codes, distance notions for convolutional codes, generation function, matrix description of convolutional codes, viterbi decoding of convolutional codes, distance bounds for convolutional codes, turbo codes and turbo decoding. Trellis Coded Modulation - concept of coded modulation, mapping by set partitioning, ungerboeck's TCM design rules, TCM decoder, Performance evaluation for Additive White Gaussian Noise (AWGN) channel, TCM for fading channels.

END SEMESTER EXAM (ALL Modules)

References:

IV

- 1. Lin S. and D. J. Costello, "Error Control Coding Fundamentals and Applications", Second Edition, Pearson Education Inc., NJ., USA, 2004
- 2. Shu Lin and Daniel J. Costello, "Error Control Coding", Second Edition, Prentice Hall, 1983.
- 3. Ranjan Bose, "Information Theory, Coding and Cryptography", Tata McGraw-Hill, 2003.
- 4. E. R. Berlekamp, "Algebraic Coding Theory", McGraw-Hill, New York, 1968.
- 5. R. E. Blahut, "Algebraic Codes for Data Transmission", Cambridge University Press Cambridge, UK, 2003.
- 6. Ranjan Bose, "Information theory, coding and cryptography", Tata McGraw Hill, 2002.
- 7. Viterbi, "Information theory and coding", McGraw Hill, 1982.
- 8. John G. Proakis, "Digital Communications", 2nd Edition, McGraw Hill, 1989.

COURSE O	COURSE CODECOURSE NAMEL-T-P-CYEAR		<u> </u>		
05CS 6	5224	DESIGN OF SECURED ARCHITECTURES	3-1-0-3	2015	
COURSE O)BJEC 1	TIVES:			
• Stud to pr	ents shal ovide a s	Il gain an understanding of the technique secure computing environment.	s and architec	tural componer	nts used
COURSE (DUTCO	MES:			
Upon compl • To k • To s	letion, th now the pecify a	e student will be able strengths and weaknesses of different sec security solution to fulfill specific design	curity design requirements	techniques. s.	
MODULE		COURSE CONTENT (3	6 hrs)		HRS
I	Architecture and Security - Architecture Reviews-Software Process- Reviews and the Software Development Cycle-Software Process and Architecture Models-Software Process and Security- Architecture Review of System-Security Assessments-Security Architecture Basics- Architecture Patterns in Security.			11	
		INTERNAL TEST 1 (Modu	le 1)		
Ш	Low-Level Architecture - Code Review-importance of code review- Buffer Overflow Exploits- Countermeasures against Buffer Overflow Attacks- patterns applicable- Security and Perl- Byte code Verification in Java- Good Coding Practices Lead to Secure Code- Cryptography- Trusted Code - Secure Communications				11
		INTERNAL TEST 2 (Modu	le 2)		1
ш	Mid-Le The A Compo Firewa Kerber The Di for N Availal Mainta Perforr	evel Architecture - Middleware Security Assumption of Infallibility. High-Leve onents- Secure Single Sign-On- Pulls- Intrusion Detection Systems-LDA os- Distributed Computing Environment stributed Sandbox- Security and Other A on-Functional Goals-Force Diagrams bility- Robustness- Reconstruction of inability, Adaptability, and Evolution- S nance- Portability.	Middleware Architectur ublic-Key In P and X.500 The Secure S Architectural C around Se Events- E Calability- In	and Security- re - Security nfrastructures-) Directories- Shell, or SSH- Goals- Metrics curity- High ase of Use- teroperability-	10

IVEnterprise Security Architecture - Security as a Process-Security Data-
Enterprise Security as a Data Management Problem- Tools for Data
Management- David Isenberg and the "Stupid Network"-Extensible
Markup Language- The XML Security Services Signaling Layer-XML and
Security Standards- The Security Pattern Catalog Revisited-XML-Enabled
Security Data-HGP: A Case Study in Data Management. Business Cases
and Security: Building Business Cases for Security

END SEMESTER EXAM (ALL Modules)

- 1. Jay Ramachandran, "Designing Security Architecture Solutions", Wiley Computer Publishing, 2010.
- 2. Markus Schumacher, "Security Patterns: Integrating Security and Systems Engineering", Wiley Software Pattern Series, 2010.

COURSE C	OURSE CODECOURSE NAMEL-T-P-CYEAR				
05CS 6	5226	DIGITAL WATERMARKING	3-1-0-3	2015	
COURSE O)BJECT	TVES:			
 To make the students aware of the basic mathematical concept behind watermarking theory and its main applications. Provides the knowledge about the applications of watermarking techniques used and teaches about Watermark security and cryptographic methods used. 					narking ed and
Upon compl	letion, th	e Students will be able to			
Unde Expl Desi Anal	erstand a ain diffe gn digita lyze the c	nd identify digital watermarking from ot rent types of watermarking applications al watermarking systems according to app different type of watermarking security is	her related fie and watermar plication doma ssues.	elds. king framework ains.	S.
MODULE		COURSE CONTENT (4	2 hrs)		HRS
I	 Watermarking host signals: Image, Video, and Audio. Multimedia compression and decompression, Lossless compression, Models watermarking, Communication-based models of watermarking, Geometric models of watermarking, modeling watermark detection by correlation 				
		INTERNAL TEST 1 (Modu	le 1)		
II Basic message coding, Mapping message in message vectors, Error correction coding, Detecting multi-symbol watermarks, Watermarking with side information, Inform(embedding, Informed coding.					11
		INTERNAL TEST 2 (Modu	le 2)		
ш	Structured dirty-paper codes, Analyzing errors, Message errors, ROC curves, The effect of whitening on error rates, Analysis of normalized correlation, Using perceptual mode, Evaluating perceptual impact of watermarks.				
IV	Genera Robust cryptog authent	l forms of perceptual model, Perceptu watermarking, Watermark security, graphy, Content authentication, Exact ication, Localization, Restoration.	al adaptive Watermark authenticatio	watermarking, security and on, Selective,	10

- 1. Cox I., M. Miller, J. Bloom, J. Fridrich and T Kalker, "Digit Watermarking and Steganography", Second Edition, Morg Kaufmann Publishers, 2008.
- 2. E. Cole, R. Krutz, and J. Conley, Network Security Bible, Wiley-Dreamtech, 2005.
- 3. W. Stallings, Cryptography and Network Security Principles and practice, 3/e, Pearson Education Asia, 2003.
- 4. C. P. Pfleeger and S. L. Pfleeger, Security in Computing, 3/e, Pearson Education, 2003.
- 5. M. Bishop, Computer Security: Art and Science, Pearson Education, 2003.

COURSE CODE		COURSE NAME	L-T-P-C	YEAR	
05CS 6232		CRYPTANALYSIS	3-1-0-3	2015	
COURSE O)BJECT	TIVES:			
• To e	nable lea	arner to understand various risks, threats a	and vulnerabil	lities in a syster	n.
• Also vulne	gives se erabilitie	ecurity awareness and countermeasures tes in a system.	o mitigate va	rious risks, thre	eats and
COURSE O	OUTCO	MES:			
• Will	able to a	design and analyze the security architectu	re designed fo	or any system.	
• Will	able to	identify the security flows in any m	ulti-tiered ap	plications, dist	tributed
syste	ems and	cloud based services and mitigate it.	_	-	
MODULE		COURSE CONTENT (3	6 hrs)		HRS
	Crypta	nalysis of classical ciphers: Vigenere c	ipher, Affine	cipher, Hill-	
I	cipher Linear Shift Register Random Bit Generator: Berlekamp- Massey algorithm for the cryptanalysis of LFSR, Correlation attack on LFSR based stream ciphers, Cryptanalysis of ORYX, Fast algebraic attack.			11	
		INTERNAL TEST 1 (Modu	le 1)		
п	 Cryptanalysis of Block Ciphers: Man in the middle attack double DES, Linear and Differential cryptanalysis. Algorithmic Number Theory: Stein's binary greatest common divisor algorithm, Shanks Tonelli algorithm for square roots in Fp, Stein's greatest common divisor algorithm for polynomials 			11	
	1	INTERNAL TEST 2 (Modu	le 2)		
III	Algorit Giant s Index Legend Elliptic	thms for DLP: Pollard Rho method for step algorithm for DLP Silver-Pohling-H calculus for DLP algorithms: Trial dre-congruence, Continued fraction met c curve method, Quadratic sieve.	r DLP, Shan fellman algori division, Fer hod, Pollard	k's baby step thm for DLP, mat method, Rho method,	10
IV	Lattice Copper parado two g Multice	based Cryptanalysis. Direct attacks rsmith's attacks. Attacks on cryptographi x, Birthday for paradox for multi collis roups, Application of Birthday para ollisions attack on hash functions.	using lattic c hash functio sions, Birthda adox in Ha	ce reduction, ons: Birth day ay paradox in sh functions,	10
		END SEIVIESTEK EAAIVI (ALL .	wiodules)		

- 1. Antoine Joux, "Algorithmic Cryptanalysis", Chapman & Hall/CRC Cryptography and Series, 2009.
- 2. Song Y Yang, "Number Theory for Computing", Second Edition, SpringerVerlag, 2010.
- 3. Gregory V. Bard, "Algebraic Cryptanalysis", Springer, 2009.
- 4. Hffstein, Jeffray, Pipher, Jill and Silverman, "An Introduction to Mathematical Cryptography", Springer, 2010.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 6234	DISTRIBUTED AND CLOUD COMPUTING	3-1-0-3	2015

- To expose the fundamentals of distributed computer systems, explore and acquire a critical understanding about the fundamental concepts of Cloud computing and its technologies.
- Enable the learner to develop a firm grounding in the tools and principles of building distributed and cloud applications.

COURSE OUTCOMES:

Upon Completion the students will be able to

- Create models for distributed systems.
- To explain the basic information storage and retrieval concepts in a storage system.
- To understand the emerging area of cloud computing, also learn about the cloud infrastructure services like PAAS, SAAS, IAAS etc..

MODULE	COURSE CONTENT (42 hrs)	HRS
I	Systems Modeling, Clustering and Virtualization- Distributed System Models and Enabling Technologies, Computer Clusters for Scalable Parallel Computing, Virtual Machines and Virtualization of Clusters and Data centers. Foundations:Introduction to Cloud Computing, Migrating into a Cloud, Enriching the 'Integration as a Service' Paradigm for the Cloud Era, The Enterprise Cloud Computing Paradigm.	11
	INTERNAL TEST 1 (Module 1)	
П	Infrastructure as a Service (IAAS) & Platform and Software as a Service (PAAS / SAAS): Virtual machines provisioning and Migration services, On the Management of Virtual machines for Cloud Infrastructures, Enhancing Cloud Computing Environments using a cluster as a Service, Secure Distributed Data Storage in Cloud Computing. Aneka, Comet Cloud, T- Systems', Workflow Engine for Clouds, Understanding Scientific Applications for Cloud Environments.	11
	INTERNAL TEST 2 (Module 2)	
Ш	Monitoring, Management and Applications: An Architecture for Federated Cloud Computing, SLA Management in Cloud Computing, Performance Prediction for HPC on Clouds, Best Practices in Architecting Cloud Applications in the AWS cloud, Building Content Delivery networks using Clouds, Resource Cloud Mashups.	10
IV	Governance and Case Studies: Organizational Readiness and Change management in the Cloud age, Data Security in the Cloud, Legal Issues in Cloud computing, Achieving Production Readiness for Cloud Services.	10

- 1. Cloud Computing: Principles and Paradigms by RajkumarBuyya, James Broberg and Andrzej M. Goscinski, Wiley, 2011.
- 2. Distributed and Cloud Computing, Kai Hwang, GeofferyC.Fox, Jack J.Dongarra, Elsevier, 2012.
- 3. Cloud Computing : A Practical Approach, Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, Tata McGraw Hill, rp2011.
- 4. Enterprise Cloud Computing, GautamShroff, Cambridge University Press, 2010.
- 5. Cloud Computing: Implementation, Management and Security, John W. Rittinghouse, James F.Ransome, CRC Press, rp2012.
- 6. Cloud Application Architectures: Building Applications and Infrastructure in the Cloud, George Reese, O'Reilly, SPD, rp2011.
- 7. Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, Tim Mather, SubraKumaraswamy, ShahedLatif, O'Reilly, SPD, rp2011.

COURSE CODE		COURSE NAME L-T-		YEAR				
05CS 6236		STORAGE MANAGEMENT	3_1_0_3	2015				
		AND SECURITY	5-1-0-5	2013				
COURSE OBJECTIVES:								
• To enable students to understand, explore and acquire a critical understanding about								
mana	aging in	formation in storage system and effecti	ve security i	mplementation	on the			
corresponding platforms.								
COURSEC				1 1 1 /	1.4			
• Intro	duce the	e students to various types of storage sy	stems availat	ble and underst	and the			
• To e	xplain th	he basic information storage and retrieval	concepts in a	storage system				
• To u	nderstan	d the issues those are specific to efficient	information	retrieval.				
To in	nplemer	nt security issues while storing and retriev	ing informati	on.				
MODULE		COURSE CONTENT (36 hrs)						
	Introdu	iction, History: computing, networking,	storage, Nee	ed for storage				
	networ	king , SAN, NAS, SAN/NAS Converg	gence, Distri	outed Storage				
Ι	Systems, Mainframe/proprietary vs. open storage, Storage Industry							
	Organi	zations and Major Vendors Market, St	orage netwo	rking strategy				
	(SAN/I	NAS) Technology						
INTERNAL TEST 1 (Module 1)								
	Storage	e components. Data organization: File vs	Block, Obie	ct: Data store:				
	Search	able models; Storage Devices (includ	ing fixed co	intent storage				
II	devices	s), File Systems, Volume Managers,	RAID syst	ems, Caches,	11			
	Prefetc	hing. Error management: Disk Error I	Management,	RAID Error				
	Manag	INTERNAL TEST 2 (Mail						
INTERNAL TEST 2 (Module 2)								
	Large S	Storage Systems: Google FS/Big Table, (Cloud/Web -	based systems				
	(Amaz Archiv	on S3), FS+DB convergence, Progra	mming moo Backup: ser	els: Hadoop.	10			
III	free. I	AN Replication issues. Storage Secur	ity. Storage	Management.	10			
	Device	Management, NAS Management, Vi	rtualization,	Virtualization				
	solutio	ns, SAN Management: Storage Provision	ing, Storage l	Migration				
	Securin	ng the storage Infrastructure, Storage	Security Fran	nework, Risk				
	Triad,	Storage Security Domains, Security I	mplementatio	on in Storage				
IV	Networ	rking. Managing the Storage Infrastructu	re, Monitorir	ng the Storage	10			
	Infrastructure, Storage Management Activities, Developing an Ideal							
	Solutio	on, Concepts in Practice.						

- 1. EMC Education Services "Information Storage and Management: Storing, Managing, and Protecting Digital Information", John Wiley & Sons, 2010
- 2. John Chirillo, ScottBlaul" Storage Security: Protecting SANs, NAS and DAS", Wiley, 2003.
- 3. David Alexander, Amanda French, Dave Sutton "Information Security Management Principles" BCS, The Chartered Institute, 2008.
- 4. Gerald J. Kowalski, Mark T. Maybury" Information Storage and Retrieval Systems: Theory and Implementation, Springer, 2000.
- 5. Foster Stockwell, "A history of information storage and retrieval" McFarland, 2001.
- 6. R. Kelly Rainer, Casey G. Cegielski, "Introduction to Information Systems: Enabling and Transforming Business, John Wiley & Sons, 2010.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR				
05CS 6266	SEMINAR- I	0-0-2-2	2015				
Each student should present a seminar on any topic related to the core/elective courses							
offered in the first semester of the M. Tech. Program. The selected topic should be based on the							
papers published in reputed international journals preferably IEEE/ACM. The selected paper							
should be approved by the Program Coordinator/Faculty member before presentation. The							
students should undertake a detailed study on the topic and submit a report at the end of the							
semester. Marks will be awarded based on the topic, presentation, participation in the seminar							
and the report.							

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 6288	MINI PROJECT	0-0-4-2	2015

The mini project is designed to develop practical ability and knowledge in tools/techniques to solve problems related to the industry, academic institutions and computer science research. Students can take up any application level/system level project pertaining to a relevant domain, preferably based on papers from IEEE/ACM journals. Projects can be chosen either from the list provided by the faculty or in the field of interest of the student. The topic should be approved by the Programme Co-ordinator / Faculty member before carrying out the work. For external projects, students should obtain prior permission after submitting the details of the guide and synopsis of the work. The project guide should have a minimum qualification of ME/M.Tech in Computer Science or related fields. At the end of each phase, presentation and demonstration of the project report duly approved by the guide in the prescribed format should be submitted for end semester assessment. Marks will be awarded based on the report and their performance during presentations and demonstrations. Publishing the work in Conference Proceedings/Journals with National/International status with the consent of the guide will carry an additional weightage in the evaluation process.
COURSE CODE	COURSE NAME	L-T-P-C	YEAR
	ETHICAL HACKING AND		
05CS 6292	DIGITAL FORENSIC TOOLS	0-0-2-1	2015
	LAD		

Course Objectives:

• The main objective this practical session is that students will get the exposure to various hacking and forensic tools.

Course Outcomes:

By the completion of this laboratory session Student

- Will gain the knowledge to implement various security attacks.
- Will get the ideas in various ways to trace an attacker.
- Will get the practical exposure to forensic tools.

Part A: Ethical hacking

- 1. Working with Trojans, Backdoors and sniffer for monitoring network communication
- 2. Denial of Service and Session Hijacking using Tear Drop, DDOS attack.
- 3. Penetration Testing and justification of penetration testing through risk analysis
- 4. Password guessing and Password Cracking.
- 5. Malware Keylogger, Trojans, Keylogger countermeasures
- 6. Understanding Data Packet Sniffers
- 7. Windows Hacking NT LAN Manager, Secure 1 password recovery
- 8. Implementing Web Data Extractor and Web site watcher.
- 9. Email Tracking.
- 10. Configuring Software and Hardware firewall.
- 11. Firewalls, Packet Analyzers, Filtering methods.

Part B: Exposure on Digital Forensic tools

- 1. Backup the images file from RAM using Helix3pro tool and show the analysis.
- 2. Introduction to Santhoku Linux operating system and features extraction.
- 3. Using Santoku operating system generates the analysis document for any attacked file from by taking backup image from RAM.
- 4. Using Santoku operating system generates the attacker injected viewing java files.
- 5. Using Santoku operating system shows how attackers opened various Firefox URL's and pdf document JavaScript files and show the analysis.
- 6. Using Santoku operating System files show how an attacker connected to the various network inodes by the specific process.

- 7. Using exiftool (-k) generate the any picture hardware and software.
- 8. Using deft_6.1 tool recover the attacker browsing data from any computer.
- 9. Using Courier tool Extract a hacker secret bitmap image hidden data.

10. Using sg (Stegnography) cyber Forensic tool hide a message in a document or any file.

11. Using sg cyber Forensic tool unhide a message in a document or any file.

12. Using Helix3pro tool show how to extract deleted data file from hard disk or usb device.

13. Using Ghostnet tool hide a message into a picture or any image file.

14. Using kgbkey logger tool record or generate an document what a user working on system

- 15. Using pinpoint metaviewr tool extract a metadata from system or from image file.
- 16. Using Bulk Extractor tool extract information from windows file system.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 7241	CLOUD SECURITY	3-1-0-3	2015
COURSE OBJECTIVES:			

- To understand the Security aspects of cloud computing which have always been subjected to many criticisms.
- Explaining the importance for any security professional to possess an understanding of the cloud architecture and study the methods to secure the same.

COURSE OUTCOMES:

Upon completion, the student will be able to

- Understand the fundamentals of cloud computing and its architecture.
- Understand the requirements for an application to be deployed in a cloud.
- Become knowledgeable in the methods to secure cloud.
- Analyze the issues and challenges faced to secure information in a cloud.

MODULE	COURSE CONTENT (36 hrs)	HRS	
I	Cloud computing Fundamentals and Architecture :- Essential characteristics, Architectural influences, Technological Influences, Operational influences, Outsourcing legal issues, BPO issues, IT server Management . Cloud architecture model – Cloud delivery model, SPI framework, SaaS, PaaS, Iaas, Deployment models –Public, community, Private, Hybrid Cloud. Alternative deployment models.	11	
INTERNAL TEST 1 (Module 1)			
II	Cloud software security fundamentals : – Security objective, security service, Cloud security design principles, Secure cloud software requirements, Secure development practice, Approaches of cloud software requirements engineering, Security policy implementation, Secure cloud software testing, penetration testing, Disaster recovery, Cloud for BCP/DCP.	11	

	INTERNAL TEST 2 (Module 2)		
III	Cloud Risk Issues and Challenges: - CIA triad, Privacy and Compliance Risk, PCIDSS, Information privacy and privacy law, Common threats and vulnerabilities, Access control issues, service provider Risk. Security policy Implementation, Computer Security incident response team (CSIRT), Virtualization security Management- virtual threats, VM security recommendations, VM security techniques – hardening, securing VM remote access.	10	
IV	Cloud Security Architecture :- General issues, Trusted cloud, Secure execution environments and communications, Micro architecture, Identity management, Access control, Autonomic security, protection, self-healing. Cloud life cycle issues – cloud standards, DMTF, ISO, ETSI, OASI, SNIA, OGF, OWASP, Incident response, Internet Engineering Task Force Incident- Handling Guidelines, Computer security and response team, Encryption and key management, VM Architecture, Key Protection, Hardware protection, VM life cycle.	10	
	END SEMESTER EXAM (ALL Modules)		
References			
7. Rona 8. Tim Ente 9. Toby Tata 10. Gaut Cam	ald L. Krutz, Russell Dean Vines, Cloud Security, Wiley publication 2010. Mather, SubraKumaraswamy, ShahedLatif, Cloud Security and Privace rprise Perspective on Risks and Compliance, O'Reilly Media, Inc., 2009. Velte, Anthony Velte, Robert Elsenpeter, Cloud Computing, A Practical Ap McGraw-Hill Education, 2009. amShroff, Enterprise Cloud Computing Technology Architecture Applice bridge University Press, 2010.	cy: An proach, cations,	

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 7243	CYBER LAWS AND SECURITY POLICIES	3-1-0-3	2015

- To enable learner to understand, explore, and acquire a critical understanding cyber law.
- Develop competencies for dealing with frauds and deceptions (confidence tricks, scams) and other cyber crimes for example, child pornography etc.

COURSE OUTCOMES:

- Make Learner Conversant With The Social And Intellectual Property Issues Emerging From Cyberspace.
- Explore The Legal And Policy Developments In Various Countries To Regulate Cyberspace;
- Develop The Understanding Of Relationship Between Commerce And Cyberspace;
- Give Learners In Depth Knowledge Of Information Technology Act And Legal Frame Work Of Right To Privacy, Data Security And Data Protection.
- Make Study On Various Case Studies On Real Time Crimes.

MODULE	COURSE CONTENT (36 hrs)	HRS
I	Introduction to Cyber Law Evolution of Computer Technology: Emergence of Cyber space. Cyber Jurisprudence, Jurisprudence and law, Doctrinal approach, Consensual approach, Real Approach, Cyber Ethics, Cyber Jurisdiction, Hierarchy of courts, Civil and criminal jurisdictions, Cyberspace-Web space, Web hosting and web Development agreement, Legal and Technological Significance of domain Names, Internet as a tool for global access.	11
	INTERNAL TEST 1 (Module 1)	
п	Information technology Act : Overview of IT Act, 2000, Amendments and Limitations of IT Act, Digital Signatures, Cryptographic Algorithm, Public Cryptography, Private Cryptography, Electronic Governance, Legal Recognition of Electronic Records, Legal Recognition of Digital Signature Certifying Authorities, Cyber Crime and Offences, Network Service Providers Liability, Cyber Regulations Appellate Tribunal, Penalties and Adjudication.	11
INTERNAL TEST 2 (Module 2)		
ш	Cyber law and related Legislation : Patent Law, Trademark Law, Copyright, Software – Copyright or Patented, Domain Names and Copyright disputes, Electronic Data Base and its Protection, IT Act and Civil Procedure Code, IT Act and Criminal Procedural Code, Relevant	10

	Sections of Indian Evidence Act, Relevant Sections of Bankers Book Evidence Act, Relevant Sections of Indian Penal Code, Relevant Sections of Reserve Bank of India Act, Law Relating To Employees And Internet, Alternative Dispute Resolution, Online Dispute Resolution (ODR).	
IV	Electronic Business and legal issues: Evolution and development in E- commerce, paper vs paper less contracts E-Commerce models- B2B, B2C, E security. Application area: Business, taxation, electronic payments, supply chain, EDI, E-markets, Emerging Trends. Case Study On Cyber Crimes: Harassment Via E-Mails, Email Spoofing (Online A Method Of Sending E-Mail Using A False Name Or E-Mail Address To Make It Appear That The E-Mail Comes From Somebody Other Than The True Sender, Cyber Pornography (Exm.MMS),Cyber-Stalking.	10
END SEMESTER EXAM (ALL Modules)		

References:

- 1. K.Kumar," Cyber Laws: Intellectual property & E Commerce, Security",1st Edition, Dominant Publisher,2011.
- 2. Rodney D. Ryder, " Guide To Cyber Laws", Second Edition, Wadhwa And Company, New Delhi, 2007.
- 3. Information Security policy & implementation Issues, NIIT, PHI.
- 4. Vakul Sharma, "Handbook Of Cyber Laws" Macmillan India Ltd, 2nd Edition, PHI, 2003.
- 5. Justice Yatindra Singh, " Cyber Laws", Universal Law Publishing, 1st Edition, New Delhi, 2003.
- 6. Sharma, S.R., "Dimensions Of Cyber Crime", Annual Publications Pvt. Ltd., 1st Edition, 2004.
- 7. Augastine, Paul T.," Cyber Crimes And Legal Issues", Crecent Publishing Corporation, 2007.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 7245	BIOMETRIC SECURITY	3-1-0-3	2015

• To provide students with understanding of biometrics, biometric equipment and standards applied to security.

COURSE OUTCOMES:

- Demonstrate knowledge of the basic physical and biological science and engineering principles underlying biometric systems.
- Understand and analyze biometric systems at the component level and be able to analyze and design basic biometric system applications.
- Be able to work effectively in teams and express their work and ideas orally and in writing.
- Identify the sociological and acceptance issues associated with the design and implementation of biometric systems.
- Understand various Biometric security issues.

MODULE	COURSE CONTENT (36 hrs)	HRS	
I	Biometrics- Introduction- benefits of biometrics over traditional authentication systems benefits of biometrics in identification systems- selecting a biometric for a system –Applications – Key biometric terms and processes - biometric matching methods -Accuracy in biometric systems.	11	
INTERNAL TEST 1 (Module 1)			
П	Physiological Biometric Technologies: Fingerprints - Technical description –characteristics - Competing technologies - strengths – weaknesses – deployment - Facial scan – Technical description - characteristics - weaknesses-deployment - Iris scan - Technical description – characteristics - strengths – weaknesses – deployment - Retina vascular pattern – Technical description – characteristics - strengths – weaknesses – deployment - Retina vascular pattern – Technical description – characteristics - strengths – weaknesses – deployment - Retina vascular pattern – Technical description – characteristics - strengths – weaknesses – deployment - Mand scan – Technical description-characteristics - strengths – weaknesses deployment – DNA biometrics.	11	
INTERNAL TEST 2 (Module 2)			

ш	Behavioral Biometric Technologies: Handprint Biometrics - DNA Biometrics - signature and handwriting technology - Technical description – classification - keyboard / keystroke dynamics - Voice – data acquisition - feature extraction - characteristics - strengths – weaknesses- deployment.	10
IV	Multi biometrics: Multi biometrics and multi factor biometrics - two-factor authentication with passwords - tickets and tokens – executive decision - implementation plan. Case studies on Physiological, Behavioral and multifactor biometrics in identification systems.	10
	END SEMESTER EXAM (ALL Modules)	
REFEREN	ICES:	
1. San in a 2. Joh Pub	nir Nanavathi, Michel Thieme, and Raj Nanavathi, "Biometrics -Identity veri network", Wiley Eastern, 2002. n Chirillo and Scott Blaul," Implementing Biometric Security", Wiley lications, 2005.	fication Eastern

3. John Berger," Biometrics for Network Security", Prentice Hall, 2004.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
	INTERNET INFORMATION		
05CS 7251	AND APPLICATION	3-1-0-3	2015
	SECURITY		

• To give exposure to various security threats to web applications/ servers and providing security to web servers.

COURSE OUTCOMES:

By the completion of this course, Student will

- Understand security concepts, security professional roles, and security resources in the context of systems and security development life cycle
- Understand the business need for security, threats, attacks, top ten security vulnerabilities, and secure software development
- Understand information security policies, standards and practices, the information security blueprint.
- Analyze and describe security requirements for typical web application scenario.

MODULE	COURSE CONTENT (36 hrs)	HRS	
Ι	Web application security- Key Problem factors – Core defense mechanisms- Handlinguser access- handling user input- Handling attackers – web spidering – Discovering hidden content. Transmitting data via the client – Hidden form fields – HTTP cookies – URL parameters – Handling client-side data securely – Attacking authentication – design flaws in authentication mechanisms –securing authentication Attacking access controls – Common vulnerabilities – Securing access controls	11	
INTERNAL TEST 1 (Module 1)			
п	Web server Hacking - Source code disclosure – Canonicalization attacks – Denial of service – Web application hacking – Web crawling Database Hacking – Database discovery – Database vulnerabilities	10	

	INTERNAL TEST 2 (Module 2)			
ш	SQL Injection - How it happens - Dynamic string building - Insecure Database Configuration - finding SQL injection – Exploiting SQL injection – Common techniques – identifying the database – UNION statements – Preventing SQL injection Platform level defenses- Using run time protection - web application Firewalls – Using ModSecurity - Intercepting filters- Web server filters - application filters – securing the database – Locking down the application data – Locking down the Database server	11		
IV	Mod Security - Blocking common attacks – HTTP finger printing – Blocking proxies requests – Cross-site scripting – Cross-site request forgeries – Shell command execution attempts – Null byte attacks – Source code revelation – Directory traversal attacks – Blog spam – Website defacement – Brute force attack – Directory indexing – Detecting the real IP address of an attacker	10		
	END SEMESTER EXAM (ALL Modules)			
Referen	ices:			
1. 1	DafyddStuttard, Marcus Pinto, The Web Application Hacker's Handbook, 2nd			
Edition, Wiley Publishing, Inc.				
2. Stuart McClure Joel, ScambRay, George Kurtz, Hacking Exposed 7: Network				
Security Secrets & Solutions, Seventh Edition, 2012, The McGraw-Hill Companies				
3.	3. Justin Clarke, SQL Injection Attacks and Defense, 2009, Syngress Publication Inc.			
4. Magnus Mischel, ModSecurity 2.5, Packt Publishing				

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 7253	DATABASE SECURITY	3-1-0-3	2015

- The main objective of the course is cover topics related to database security and auditing.
- The main areas of study is on the key components of information assurance as it relates to database systems confidentiality, integrity, and availability, and how these components can be managed and measured.

COURSE OUTCOMES:

Upon completion, the student will be able to

- Identify access control methods for secure database application development
- Analyze vulnerabilities in the database.
- Understand common attacks used against database confidentiality and explain how to defend against the attack.
- Apply security audit methods to database communication and design secure database schema.

MODULE	COURSE CONTENT (36 hrs)	HRS		
I	Introduction to databases: database modeling, conceptual database design, overview of SQL and relational algebra, Access control mechanisms in general computing systems: Lampson's access control matrix. Mandatory access control.	10		
INTERNAL TEST 1 (Module 1)				
п	Authentication mechanisms in databases, DAC in databases: Griffiths and Wade, MAC mechanisms in databases: SeaView. RBAC in databases. Authentication and password security – Weak authentication options, Implementation options, Strong password selection method, Implement account lockout, Password profile.	11		
INTERNAL TEST 2 (Module 2)				

III	SQL Injection, Auditing in databases, Statistical inference in databases, Private information retrieval viewed as a database access problem. Privacy in data publishing, Virtual Private Databases, Security of outsourced databases.	10
IV	Securing database to database communication – Monitor and limit outbound communication, Protect link usernames and passwords – Secure replication mechanisms. Trojans- Types of DB Trojans, Monitor for changes to run as privileges, Traces and event monitors. Encrypting data- in transit, Encrypt data-at-rest. Database security auditing categories.	11

END SEMESTER EXAM (ALL Modules)

References:

- 1. Ron Ben Natan, "Implementing Database Security and Auditing", Elsevier, 2005.
- 2. Hassan A. Afyouni, "Database Security and Auditing: Protecting Data Integrity and Accessibility", Course Technology, 2005.
- 3. Michael Gertz and SushilJajodia, "Handbook of Database Security-Applications and Trends", Springer, 2008.
- 4. Database Security, Cengage Learning; 1 edition (July 12, 2011), AlfredBasta . Melissa Zgola
- 5. Data warehousing and data mining techniques for cyber security, Springer's By AnoopSingha.
- 6. Carlos Coronel, Steven A. Morris, Peter Rob, "Database Systems: Design, Implementation, and Management", Cengage Learning, 2011.
- 7. Vijay Atluri, John Hale, "Research Advances in Database and Information Systems Security", Springer, 2000.
- 8. PierangelaSamarati, Ravi Sandhu," Database Security X: Status and prospects, Volume 10", Springer, 1997.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 7255	DEPENDABLE DISTRIBUTED SYSTEMS	3-1-0-3	2015

- To explore the state-of-the art principles, methods, and techniques for devising adaptive and dependable distributed systems.
- Also explains the importance of learning the working of computers in a banking system and creates an awareness of various Biometric systems, their performance and the issues related to the security

COURSE OUTCOMES:

Upon completion, the student will be able to

- Understand the Architectural and infrastructural principles for adaptive and dependable distributed systems.
- Understand the Approaches to improve the scalability of dependable and adaptive systems.
- Understand about the basic banking systems and the bookkeeping practices followed.
- Gain a broader knowledge and understand the different Biometric techniques.

MODULE	COURSE CONTENT (36 hrs)	HRS
Ι	Dependability concepts - Faults and Failures – Redundancy – Reliability – Availability – Safety – Security – Timeliness - Fault-classification - Fault- detection and location - Fault containment - Byzantine failures - Fault injection - Fault-tolerant techniques - Performability metrics. Fault-tolerance in real-time systems - Space-time tradeoff - Fault-tolerant techniques (N-version programming - Recovery block - Imprecise computation; (m,k)- deadline model) – Adaptive fault-tolerance - Fault detection and location in real-time systems. Security Engineering – Protocols - Hardware protection - Cryptography – Introduction – The	11

F		
	Random Oracle model – Symmetric Crypto- primitives – modes of operations – Hash functions – Asymmetric crypto primitives.	
	INTERNAL TEST 1 (Module 1)	
II	Distributed systems - Concurrency - fault tolerance and failure recovery – Naming. Multilevel Security – Security policy model – The Bell Lapadula security policy model – Examples of Multilevel secure system – Broader implementation of multilevel security system. Multilateral security – Introduction – Comparison of Chinese wall and the BMA model – Inference Control – The residual problem.	10
	INTERNAL TEST 2 (Module 2)	
ш	Banking and bookkeeping – Introduction – How computers systems works – Wholesale payment system – Automatic teller Machine – Monitoring systems – Introduction – Prepayment meters – Taximeters, Tachographs and trunk speed limits. Nuclear Command and control – Introduction – The kennedy memorandum – unconditionally secure authentication codes – shared control security – tamper resistance and PAL – Treaty verification. Security printing and seals – Introduction – History – Security printing – packaging and seals – systemic vulnerability – evaluation methodology.	11
IV	Bio metrics – Introduction – Handwritten signature – face recognition – fingerprints – Iris codes – Voice recognition. Emission Security – Introduction – Technical Surveillance and countermeasures – Passive Attacks – Active Attacks. Electronic and Information warfare – Introduction – Basics – Communication system – Surveillance and target acquisition – IFF system – Directed Energy Weapon – Information Warefare. Telecom Security – Introduction – Phone Breaking – Mobile phones – Network attack and defense - Protecting E-commerce systems- E – policy – Management issues – systems evaluation and assurance. END SEMESTER EXAM (ALL Modules)	10
References		
1. Ross depe 2. Davi Syst 3. Hass Perfe Corr	s J Anderson and Ross Anderson, "Security Engineering: A guide to be endable distributed systems", Wiley, 2001. id Powell, "A generic fault-Tolerant architecture for Real-Time Depo ems", Springer, 2001. san B Diab and Albert Y. Zomaya, "Dependable computing systems: Par ormance issues and Applications", Wiley series on Parallel and Dist puting, 2000.	ouilding endable radigm, tributed

COURSE CODE	COURSE NAME	L-T-P-C	YEAR	
05CS 7267	SEMINAR – II	0-0-2-2	2015	
Each student shall present	nt a seminar on any topic related to the	ir miniproje	ect or thesis work of	
the M. Tech. Program.	The selected topic should be based on	the papers p	published in reputed	
international journals preferably IEEE/ACM. They should get the paper approved by the				
Program Co-ordinator/Faculty member in charge of the seminar and shall present it in the class.				
Every student shall participate in the seminar. The students should undertake a detailed study on				
the topic and submit a report at the end of the semester. Marks will be awarded based on the				
topic, presentation, participation in the seminar and the report submitted.				

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 7287	PROJECT PHASE I	0-0-8-6	2015

In Master's thesis Phase-I, the students are expected to select an emerging research area in Computer Science or related fields, after conducting a detailed literature survey. A detailed design should be prepared based on the study, comparison, analysis and review of the research work and recent developments in the area. Recent National/International Conference Proceedings/Journals, preferably IEEE/ACM, should be referred for the selection of the topic.

Students should submit a copy of Phase-I thesis report covering the content discussed above and highlighting the features of work to be carried out in Phase-II of the thesis. Emphasis should be given for literature survey, scope and design of the proposed work along with the details of the preliminary work carried out on the thesis topic.

The candidate should present the current status of the thesis work and the assessment will be made on the basis of the work and the presentation, by a panel of examiners. This panel can be a committee headed by the head of the department with two other faculty members in the area of the project, of which one shall be the project supervisor .If the project is done outside the college, the external supervisor associated with the student will also be a member of the committee. The examiners should give their suggestions in writing to the students so that it should be incorporated in the Phase–II of the thesis.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
05CS 7288	PROJECT PHASE II	0-0-21-12	2015

In the fourth semester, the thesis work approved and evaluated in third semester should be continued and carried out to successful completion. A detailed thesis report should be submitted at the end of phase II. The work carried out should lead to a publication in a National / International Conference or Journal. The papers received acceptance before the M.Tech evaluation will carry specific weightage.

Final evaluation of the project will be taken up only on completion of the project. This shall be done by a committee constituted by the principal of the college for the purpose. The concerned head of the department shall be the chairman of this committee. It shall have two senior faculty members from the same department, project supervisor and external supervisor of the student, if any and an external expert either from an academic /R&D organization or from industry as members.